|Table of Contents|

Effects of Salt Stress on Physiological Characteristics and Secondary Metabolites of Cannabis sativa

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年19
Page:
106-113
Research Field:
Publishing date:

Info

Title:
Effects of Salt Stress on Physiological Characteristics and Secondary Metabolites of Cannabis sativa
Author(s):
QU Shixu12SUO Yizhen12YUAN Haipeng12ZHANG Yuhong12
(1.Key Laboratory of Forestry Plant Ecology of Ministry of Education,Northeast Forestry University,Harbin,Heilongjiang 150040;2.Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances,Harbin,Heilongjiang 150040)
Keywords:
Cannabis sativa L.salt stressphysiological characteristicstotal flavonoidscannabidiol
PACS:
S 567.21+9
DOI:
10.11937/bfyy.20230390
Abstract:
Taking Cannabis sativa L.as the test material,the seedlings were treated with salt solution of different concentrations (100,200,300,400 mmol·L-1),normal growing seedlings were used as control (CK),the changes of physiological indexes,and contents of secondary metabolites such as total flavonoids and cannabidiol were observed.The physiological and biochemical characteristics of C.sativa under salt (NaCl) stress and the effects of secondary metabolites content were studied,in order to provide reference for cultivation and salt-tolerance adaptability of C.sativa.The results showed that the net photosynthetic rate,stomatal conductance,transpiration rate,maximum photochemical efficiency (Fv/Fm) and photosynthetic pigment decreased continuously with the increase of salt concentration and the prolongation of stress time.The contents of malondialdehyde and proline increased gradually with the increase of salt concentration (except proline under N4 treatment).The activities of soluble protein,soluble sugar,catalase (CAT),peroxidase (POD),ascorbate catalase (APX),superoxide dismutase (SOD) and total flavonoid content increased first and then decreased with the increase of salt concentration,and reached the maximum value at 200 mmol·L-1 salt concentration.When treated at 100 mmol·L-1 salt concentration for 1 to 5 days,CBD content was slightly higher than that of CK,but the difference was not significant (P>0.05),while under 200-400 mmol·L-1 treatment,CBD content was continuously decreased with the increase of salt concentration and the extension of treatment time,but there was a significant difference compared with CK (P<0.05).These results indicated that C.sativa had a certain tolerance to salt stress.Under salt stress below 200 mmol·L-1,C.sativa could maintain basic physiological activities,while salt concentration above 200 mmol·L-1,C.sativa physiology was inhibited and positively correlated with salt concentration.

References:

[1]郭凤丹,管仁伟,赵秋晨,等.药用植物盐胁迫响应机理研究进展[J].山东农业科学,2022,54(9):148-157.[2]ZHAO S S,ZHANG Q K,LIU M Y,et al.Regulation of plant responses to salt stress[J].International Journal of Molecular Sciences,2021,22(9):4609.[3]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1996.[4]龙瑜菡.大麻品种对中性盐和碱性盐胁迫的耐性差异研究[D].昆明:云南大学,2017.[5]车野,郭丽,王明泽,等.我国工业大麻发展现状及存在的问题[J].黑龙江农业科学,2022(9):105-110.[6]闫博巍.工业大麻(Cannabis sativa L.)种子的营养品质及潜在功能[J].中国麻业科学,2022,44(5):304-312.[7]张际庆,陈士林,尉广飞,等.高大麻二酚(CBD)含量药用大麻的新品种选育及生产[J].中国中药杂志,2019,44 (21):4772-4780.[8]王学奎,黄见良.植物生理生化实验原理与技术[M].3版.北京:高等教育出版社,2015.[9]付立忠,赵利梅,刘骞,等.氮素形态对三叶青块根主要化学成分含量及抗氧化活性的影响[J].中国药学杂志,2021,56(8):633-639.[10]刘胜贵,马海悦,李智高,等.HPLC法测定工业大麻花叶中的CBD和THC的含量[J].云南化工,2020,47(5):62-64.[11]ONDRASEK G,RATHOD S,MANOHARA K K,et al.Salt stress in plants and mitigation approaches[J].Plants-Basel,2022,11(6):717.[12]王珊,李静,吴玉洁,等.盐胁迫对罗布麻生长和生理的影响[J].草业科学,2022,39(9):1832-1841.[13]REGNI L,DELPINO A M,MOUSAVI S,et al.Behavior of four olive cultivars during salt stress[J].Frontiers in Plant Science,2019(10):867.[14]YANG Z,LI J L,LIU L N,et al.Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum[J].Frontiers in Plant Science,2020(10):1722.[15]孟诗原,王倩,韦业,等.盐胁迫对西南卫矛生长及光合特性的影响[J].山东大学学报(理学版),2019,54(7):26-34.[16]张晓婷,王雪松,贾文飞,等.植物在盐处理下的研究进展[J].北方园艺,2021(6):137-143.[17]ZHAO C Z,ZHANG H,SONG C P,et al.Mechanisms of plant responses and adaptation to soil salinity[J].Innovation,2020,1(1):100017.[18]赵英,何璐洁,邓平,等.NaCl胁迫下罗汉果幼苗生长和生理特性的变化[J].江苏农业科学,2020,48(15):199-203.[19]李悦,蔡亚南,任安琦,等.盐碱胁迫对元宝枫幼苗生长和生理特性的影响[J].东北林业大学学报,2022,50(8):5-14,21.[20]姚玉涛,张国新,丁守鹏,等.盐胁迫对草莓苗期生长及氧化还原系统的影响[J].北方园艺,2021(17):22-29.[21]杨万鹏.NaCl胁迫对黑果枸杞形态特征及生理特性的影响[D].兰州:甘肃农业大学,2019.[22]LI Y Q,KONG D X,FU Y,et al.The effect of developmental and environmental factors on secondary metabolites in medicinal plants[J].Plant Physiology and Biochemistry,2020,148:80-89.[23]郭兰萍,周良云,康传志,等.药用植物适应环境胁迫的策略及道地药材“拟境栽培”[J].中国中药杂志,2020,45(9):1969-1974.[24]SHAH A,SMITH D L.Flavonoids in agriculture:Chemistry and roles in,biotic and abiotic stress responses,and microbial associations[J].Agronomy-Basel,2020,10(8):1209.[25]孟祥才,李晓颖,姚杰,等.生态胁迫促进道地药材质量形成机制与质量评价思路[J].中草药,2022,53(5):1587-1594.[26]王可.关于工业大麻提取物大麻二酚的价值概述及其提取和纯化工艺的探讨[J].化工与医药工程,2021,42(5):1-6.

Memo

Memo:
-
Last Update: 2023-11-29