|Table of Contents|

Optimization of Deproteinization Process and Biological Activity of Adiantum capillus-veneris Polysaccharide by Response Surface Methodology

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年20
Page:
77-85
Research Field:
Publishing date:

Info

Title:
Optimization of Deproteinization Process and Biological Activity of Adiantum capillus-veneris Polysaccharide by Response Surface Methodology
Author(s):
YANG LijunLUO WeiCUI ChenxuGAO HanHE DingxuanDONG Cui
(College of Pharmaceutical Engineering,Xinyang Agriculture and Forestry University,Xinyang,Henan 464000)
Keywords:
Adiantum capillus-venerispolysaccharideSevage methodlowering blood sugarantioxidant
PACS:
TS 241
DOI:
10.11937/bfyy.20230239
Abstract:
Taking Adiantum capillus-veneris as test material,the optimization method of combining single factor experiments and response interviews was used to optimize the deproteinization process of polysaccharides from Adiantum capillus-veneris.The effects of polysaccharides from Adiantum capillus-veneris before and after deproteinization were measured α-glucasidase inhibitory activity of glucosidase and its ability to scavenge DPPH free radicals were expected,in order to provide reference for the comprehensive utilization of polysaccharides from Adiantum capillus-veneris.The results showed that the optimal deproteinization process conditions of Adiantum capillus-veneris polysaccharides were as follows,the volume ratio between polysaccharide solution and Sevage reagent was 2∶1,the deproteinization time was 10 minutes,the deproteinization time was 5 times,the protein removal rate could reach 73.41%,and the polysaccharide loss was 25.92%.The IC50 of undeproteinized Adiantum capillus-veneris polysaccharides for α-glucosidase and DPPH radicals were 0.31,0.81 mg·mL-1,respectively.The IC50 of clematis Adiantum capillus-veneris polysaccharides for α-glucosidase and DPPH radicals were 0.26,0.59 mg·mL-1,respectively,which increased by 0.05,0.22 mg·mL-1 compared with undeproteinized proteins,respectively,which proved that the removal of protein by Sevage method could effectively improve the ability of Adiantum capillus-veneris polysaccharides to inhibit α-glucosidase and antioxidant capacity.

References:

[1]汪金梅,于旭东,蔡泽坪,等.铁线蕨属植物的研究进展[J].分子植物育种,2019,17(1):255-263.[2]国家中医药管理局《中华草本》编委会,中华草本(第二册)[M].上海:上海科学技术出版社,1999.[3]KHAN M F,TANG H,LYLES J T,et al.Antibacterial properties of medicinal plants from pakistan against multidrug-resistant ESKAPE pathogens[J].Frontiers in Pharmacology,2018,9(2):815.[4]呼凤兰,胡诗琪.吕梁红枣多糖的提取及其抗氧化性研究[J].北方园艺,2022(22):91-96.[5]KASABRI V,ALHALLAQ E K,BUSTANJI Y K,et al.Antiobesity and antihyperglycaemic effects of Adiantum capillus-veneris extracts:In vitro and in vivo evaluations[J].Pharmaceutical Biology,2016,9(1):164-172.[6]何伟,孙自学,王光策.磁振磁电治疗仪联合前列倍喜胶囊治疗慢性前列腺炎/慢性骨盆疼痛综合征的临床疗效观察[J].中华男科学杂志,2020,26(5):452-456.[7]牛小花,陈洪源.3种荷叶铁线蕨提取物抑菌活性研究[J].内蒙古中医药,2017,36(10):130.[8]迪那拉·恰热甫汗,太力艾提·吐尔洪,热孜艳木·亚森,等.复方铁线蕨颗粒中总黄酮和总酚的提取及其对宫颈癌细胞的作用[J].食品安全质量检测学报,2020,11(2):409-416.[9]YU Y,SHEN M,SONG Q,et al.Biological activities and pharmaceutical applications of polysaccharide from natural resources:A review[J].Carbohydr Polym.2018,183(1):91-101.[10]王歆彤,李朋月,吴兰芳,等.知母多糖复合酶提取工艺优化及其免疫活性[J].食品工业科技,2022,43(11):218-227.[11]LI W,HU X,WANG S,et al.Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation[J].Int J Biol Macromol,2020,145(15):985-997.[12]李文娟,初悦雷,潘雨欣,等.白扁豆多糖通过HPA轴介导降血糖的作用机制[J].食品工业科技,2022,43(7):361-367.[13]杨庆伟,王芃,全迎萍.灰树花子实体多糖硫酸酯化及抗凝血活性研究[J].北京联合大学学报,2022,36(2):52-56.[14]ZHOU S,HUANG G.Preparation,structure and activity of polysaccharide phosphate esters[J].Biomed Pharmacother,2021,144:112332.[15]赵丽平,刘琦,蔡静,等.刺槐花多糖蛋白质脱除工艺优化及生物活性测试[J].中国食品添加剂,2022,33(9):63-68.[16]王莹,邢晓玲,李屿君,等.香菇多糖脱蛋白工艺及其抗氧化活性研究[J].食品研究与开发,2020,41(14):98-103.[17]亓希武,房海灵,陈泽群,等.桃胶多糖脱蛋白工艺研究[J].现代食品,2021(8):104-107.[18]华波.重庆特有植物荷叶铁线蕨Adiantum reniforme var.sinense多糖和黄酮的提取、抗氧化及抑菌特性研究[D].重庆:西南大学,2011.[19]殷凯,李湘洲,张胜,等.长沙青皮竹多糖脱蛋白质方法研究[J].食品与机械,2013,29(6):176-178.[20]蔡月琴,刘艺敏,凡莉莉,等.响应面法优化巴戟天多糖提取工艺[J].森林与环境学报,2019,39(3):303-309.[21]陈越,宋振康,张海悦.三氯乙酸法脱除龙葵果多糖中蛋白质的工艺优化[J].食品与发酵工业,2020,46(24):198-203.[22]尹延霞,朱奇峰,刘汉杰,等.中心组合实验设计响应面法优化α淀粉酶抑制剂筛选条件[J].西南师范大学学报(自然科学版),2015,40(4):83-88.[23]GHANI U,NUR-E-ALAM M,YOUSAF M,et al.Natural flavonoid α-glucosidase inhibitors from Retama raetam:Enzyme inhibition and molecular docking reveal important interactions with the enzyme active site[J].Bioorg Chem,2019,87:736-742.[24]李美萍,侯健,刘燕,等.细叶韭花醇提物体外抗氧化及对α-葡萄糖苷酶抑制作用的研究[J].中国调味品,2022,47(2):30-34.[25]胡文兵,杨占威,陈慧,等.Plackett-Burman和Box-Behnken试验设计优化超声波-酶法提取青钱柳多糖工艺及结构初探[J].天然产物研究与开发,2017,29(4):671-679.[26]ZHANG R,MA C,WEI Y,et al.Isolation,purification,structural characteristics,pharmacological activities,and combined action of Hedyotis diffusa polysaccharides:A review[J].Int J Biol Macromol,2021,183(31):119-131.[27]张勇,周丽明,黄章平.比清除率衡量Sevage法脱茶籽多糖蛋白的效果[J].南方农业学报,2016,47(1):107-111.[28]华波.重庆特有植物荷叶铁线蕨Adiantum reniforme var.sinense多糖和黄酮的提取、抗氧化及抑菌特性研究[D].重庆:西南大学,2011.

Memo

Memo:
-
Last Update: 2023-11-30