|Table of Contents|

Accumulation and Allocation Characteristics of Biomass and Salt Ion of Corylus heterophylla × Corylus avellana Seedlings Under NaCl Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年19
Page:
22-28
Research Field:
Publishing date:

Info

Title:
Accumulation and Allocation Characteristics of Biomass and Salt Ion of Corylus heterophylla × Corylus avellana Seedlings Under NaCl Stress
Author(s):
LUO DaSONG FenghuiSHI Yanjiang
(Institute of Economic Forests,Xinjiang Academy of Forestry Science,Urumqi,Xinjiang 830063)
Keywords:
NaCl stressNa+net accumulation llocation Corylus heterophylla× Corylus avellana
PACS:
S 664.4
DOI:
10.11937/bfyy.20225220
Abstract:
Two-year-old seedlings of Corylus heterophylla × Corylus avellana were selected as test materials.The seedlings were treated with different NaCl concentrations (0,50,100,200 mmol·L-1) in a pot salt experiment.Subsequently,the effects of NaCl stress on the accumulation and allocation characteristics of biomass and salt ion in different tissues were studied,in order to definite the response and adaptive mechanism of C.heterophylla × C.avellana to salt stress.The results showed that after NaCl stress,the biomass accumulation of roots,stems,leaves,shoots and the whole plant all decreased significantly,while the root-shoot ratio increased significantly.Under different NaCl stress,plant biomass was allocated to the root most (75.75%),followed by the stem (8.34%),and the leaf least (15.91%).With the increase of NaCl concentration,the Na+ content in different tissues showed a significant increase trend.Under 50,100 mmol·L-1 and 200 mmol·L-1 NaCl stress,the Na+ content in roots increased 1.12,2.08 times and 4.22 times,respectively,compared with the control.The Na+ content showed that leaves (18.46 mg·g-1)>stems (2.58 mg·g-1)>roots (1.77 mg·g-1).With the increase of NaCl concentration,the changes of net accumulation and relative net accumulation of Na+ in different tissues was different.The net Na+ accumulation and relative net accumulation showed that leaves (70.99 mg·plant-1 and 68.53%)>roots (28.03 mg·plant-1 and 26.97%)>stems (4.60 mg·plant-1 and 4.50%).In conclusion,our findings suggested that,C.heterophylla × C.avellana could improve the root-shoot ratio by allocating a large proportion of biomass to the root under salt stress.At the same time,the root transports the absorbed excess Na+ to the leaves,and finally become the main storage tissue of Na+.On the one hand,it reduced the Na+ toxicity in the root,on the other hand,it enhanced the osmotic potential difference between the aboveground and underground,thus maintaining normal physiological functions.C.heterophylla×C.avellana had a certain salt tolerance,which could be reasonably developed and utilized as an eco-economical tree species in saline-alkali areas of Xinjiang.

References:

[1]李焕勇,杨秀艳,唐晓倩,等.NaCl处理对小果白刺叶片主要渗透调节物质和激素水平的影响[J].东北林业大学学报,2019,47(5):30-35.[2]TANG X Q,ZHANG H L,SHABALA S,et al.Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall[J].Tree Physiology,2021,41(7):1264-1277.[3]梁春飞,石冠旗,金晓玲.不同冬青品种对盐胁迫的生长及生理响应[J].北方园艺,2021(16):74-82.[4]LIU R,YANG X J,GAO R R,et al.Allometry rather than abiotic drivers explains biomass allocation among leaves,stems and roots of Artemisia across a large environmental gradient in China[J].Journal of Ecology,2021,109(2):1026-1040.[5]CHEESEMAN J M.Mechanisms of salinity tolerance in plants[J].Plant Physiology,1988,87(3):547-550.[6]ADEM G D,ROY S J,ZHOU M,et al.Evaluating contribution of ionic,osmotic and oxidative stress components towards salinity tolerance in barley[J].BMC Plant Biology,2014,14(1):1-13.[7]张宇和,柳鎏,梁维坚,等.中国果树志·板栗榛子卷[M].北京:中国林业出版社,2005.[8]李嘉诚,罗达,宋锋惠,等.14个品种(系)平欧杂种榛抗寒性比较[J].东北林业大学学报,2018,46(10):29-35.[9]刘庚,林玉梅,张立民,等.抗寒品种(系)平欧杂种榛坚果经济性状评价[J].东北林业大学学报,2018,46(10):36-39.[10]宋锋惠,殷传杰,史彦江,等.平欧杂种榛优良品种的抗旱性比较[J].东北林业大学学报,2015,43(8):7-11.[11]李嘉诚,罗达,史彦江,等.平欧杂种榛叶片解剖结构的抗旱性研究[J].西北植物学报,2019,39(3):462-471.[12]张丽,贾志国,马庆华,等.盐碱胁迫对平欧杂种榛枝条电阻抗图谱参数及离子含量的影响[J].应用生态学报,2014,25(11):3131-3138.[13]张怡,沈应柏,罗晓芳.水分胁迫对四倍体刺槐苗生长和光合作用的影响[J].林业科学研究,2010,23(4):920-923.[14]WEINER J.Allocation,plasticity and allometry in plants[J].Perspectives in Plant Ecology Evolution and Systematics,2004,6(4):207-215.[15]刘正祥,张华新,杨秀艳,等.NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J].生态学报,2014,34(2):326-336.[16]李娴,张丽娟,朱倩楠,等.盐胁迫对枸杞枝条基质茄子幼苗生长及气体交换参数的影响[J].北方园艺,2022(18):1-7.[17]莫海波,殷云龙,芦治国,等.NaCl胁迫对四种豆科树种幼苗生长和K+、Na+含量的影响[J].应用生态学报,2011,22(5):1155-1161.[18]刘强,周晓梅,王占武.NaCl处理对曼陀罗幼苗生长、光合、离子积累及抗氧化系统的影响[J].东北林业大学学报,2021,49(1):33-37.[19]罗达,吴正保,史彦江,等.盐胁迫对3种平欧杂种榛幼苗叶片解剖结构及离子吸收、运输与分配的影响[J].生态学报,2022,42(5):1876-1888.[20]EGEA I,PINEDA B,ORTIZ-ATIENZA A,et al.The SlCBL10 calcineurin B-like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis[J].Plant Physiology,2018,176(2):1676-1693.[21]李霞,高树桃,吴红,等.NaCl胁迫对3个桂花品种离子吸收和运输的影响[J].江苏农业科学,2022,50(23):116-122.[22]郝汉,曹磊,陈伟楠,等.盐胁迫对槲树(Quercus dentata)幼苗离子平衡及其生理生化特性的影响[J].生态学报,2020,40(19):6897-6904.[23]TANG X Q,YANG X Y,LI H Y,et al.Maintenance of K+/Na+ balance in the roots of Nitraria sibirica Pall.in response to NaCl stress[J].Forests,2018,9(10):601.[24]赵昕,杨小菊,石勇,等.盐胁迫下荒漠共生植物红砂与珍珠的根茎叶中离子吸收与分配特征[J].生态学报,2014,34(4):963-972.[25]唐晓倩,李焕勇,杨秀艳,等.短期NaCl胁迫对西伯利亚白刺幼苗Na+、K+分配和平衡的影响[J].林业科学研究,2017,30(6):1022-1027.[26]杨秀艳,张华新,张丽,等.NaCl胁迫对唐古特白刺幼苗生长及离子吸收、运输与分配的影响[J].林业科学,2013,49(9):165-171.

Memo

Memo:
-
Last Update: 2023-11-28