|Table of Contents|

Study on Integrated Remediation of Cd contaminated Soil by Photinia serrulata Combined With Peat Conditioner

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年13
Page:
77-84
Research Field:
Publishing date:

Info

Title:
Study on Integrated Remediation of Cd contaminated Soil by Photinia serrulata Combined With Peat Conditioner
Author(s):
HOU Luyao1ZHANG Xiaomian2YE Shengzhong3XU Jun4YUE Chunlei2WANG Jun2
(1.Zhejiang A&F University,Hangzhou,Zhejiang 310023;2.Zhejiang Forestry Extension Station,Hangzhou,Zhejiang 310020;3.Yongjia County Natural Resources and Planning Bureau,Yongjia,Zhejiang 325100;4.Yuyao Natural Resources and Planning Bureau,Yuyao,Zhejiang 315400)
Keywords:
Photinia fraseriheavy metal Cd contaminated soilpeatsoil conditioner
PACS:
-
DOI:
10.11937/bfyy.20224303
Abstract:
Soil nutrient changes and physiological responses of Photinia serrulata were investigated by using P.serrulata as a test material, combined with peat as a soil conditioner, in order to provide reference for the application of P.serrulata.The results showed that,under the conditions of planting P.serrulata,the addition of peat with a mass ratio of 5% could raise the pH of Cd contaminated soil by 0.05 units and raise the organic matter content to 39.3%.Under Cd contaminated soil conditions, P.serrulata enhanced its adaptability to Cdcontaminated soil by increasing the activities of osmoregulatory substances such as soluble sugars,soluble proteins and antioxidant enzymes such as superoxide dismutase,catalase and peroxidase.In Cdcontaminated soils,all indices of P.serrulata under combined application of plant measures(P.serrulata) + conditioner (mass ratio 5% peat) were more suitable for plant growth than the purely contaminated group.The addition of peat conditioner can effectively enhance Cd contaminated soil′s pH and organic matter content.P.serrulata has a strong ability to adapt and self regulate to heavy metal Cd stress in soil.Adding conditioner (peat) to Cd contaminated soil can reduce the translocation and enrichment capacity of P.serrulata for Cd.

References:

[1]SHI L,GUO Z,PENG C,et al.Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers:A fourseason field experiment[J].Ecotoxicology and Environmental Safety,2019,171(4):425-434.[2]刘彩红,胡喻华,张春霞,等.广东沿海红树林生态修复模式研究[J].林业与环境科学,2020,36(4):102-106. [3]XIONG T T,AUSTRUY A,PIERART A,et al.Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture[J].Journal of Environmental Sciences,2016(8):16-27.[4]喻淼.含锌和钌金属环糊精的合成及其生物活性[D].天津:南开大学,2010.[5]WANG X,BRUSSEAU M L.Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin[J].Environmental Science & Technology,1995,29(10):26322635.[6]NORKUS E.Metal ion complexes with native cyclodextrins:An overview[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2009,65(3/4):237-248.[7]方松林.不同园林植物对土壤重金属的吸收及修复效应[J].江苏农业科学,2017,45(14):210-214,22.[8]杨静,王华田,宋承东,等.持续低温胁迫对红叶石楠抗寒生理生化特性的影响[J].江西农业大学学报,2007(6):988-992.[9]杨瑞卿,杨学民,申晨.21种园林植物对大气重金属污染物的吸收能力比较[J].江苏农业科学,2016,44(8):515-518.[10]汪有良.园林灌木对城市环境中镉和铅吸收积累作用研究[J].北方园艺,2010(10):103-106.[11]石东平,刘秋荣.工业园道路两侧土壤及行道树的叶片Cr富集与污染评价[J].安全与环境学报,2019,19(5):1803-1809.[12]刘琛,林义成,郭彬,等.丛枝菌根真菌通过改变植物基因表达水平和微生物群落结构促进红叶石楠对镉的吸收[J].生物工程学报,2022,38(1):287-302.[13]刘冰.17种道路绿化树木叶片重金属镉和铬含量的比较研究[J].西北师范大学学报(自然科学版),2014,50(6):104-109.[14]全国农业技术推广服务中心,中国农业科学院农业资源与农业区划研究所,山东省土壤肥料总站.土壤水溶性盐总量的测定:NY/T 1121/16-2006[S].北京:中国标准出版社,2006.[15]全国农业技术推广服务中心,中国农业科学院农业资源与农业区划研究所,山东省土壤肥料总站.土壤pH的测定:NY/T 1121.2-2006[S].北京:中国标准出版社,2006.[16]全国农业技术推广服务中心,中国农业科学院农业资源与农业区划研究所,山东省土壤肥料总站.土壤有机质的测定:NY/T 1121.6-2006[S].北京:中国标准出版社,2006.[17]王北洪,马智宏,付伟利.密封高压消解罐消解原子吸收光谱法测定土壤重金属[J].农业工程学报,2008,24(S2):255-259.[18]罗剑秋,吴菡,袁文东,等.土壤8种有效态元素的测定.二乙烯三胺五乙酸浸提:感耦合等离子体原子发射光谱法:HJ 804-2016[S].北京:中国标准出版社,2017[19]张清航,张永涛.植物体内丙二醛(MDA)含量对干旱的响应[J].林业勘查设计,2019(1):110-112.[20]杨振德.分光光度法测定叶绿素含量的探讨[J].广西农业大学学报,1996(2):145-150.[21]刘海英,王华华,崔长海,等.可溶性糖含量测定(蒽酮法)试验的改进[J].实验室科学,2013,16(2):19-20.[22]邓丽莉,潘晓倩,生吉萍,等.考马斯亮蓝法测定苹果组织微量可溶性蛋白质含量的条件优化[J].食品科学,2012,33(24):185-9.[23]杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005(4):539-43.[24]冼丽铧,梁登裕,冯嘉仪,等.重金属污染土壤的园林植物修复技术及其应用研究进展[J].林业与环境科学,2021,37(3):124-132.[25]陈凌.土壤镉污染的植物修复技术[J].无机盐工业,2009,41(2):45-47.[26]白向玉.剩余污泥中重金属污染的蚯蚓活化:花卉植物修复机理研究[D].徐州:中国矿业大学,2010.[27]付广义,邱亚群,宋博宇,等.东江湖铅锌矿渣堆场优势植物重金属富集特征[J].中南林业科技大学学报,2019,39(4):117-22.[28]王爱国,邵从本,罗广华.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986(2):55-57.[29]张阿芳,张庆,代惠萍,等.镉胁迫对银灰杨根和叶片渗透调节物质的影响[J].西北林学院学报,2018,33(2):83-87.[30]DAI H,WEI S,TWARDOWSKA I,et al.Hyperaccumulating potential of Bidens pilosa L.for Cd and elucidation of its translocation behavior based on cell membrane permeability[J].Environmental Science and Pollution Research,2017.[31]葛坤,王培军,邵海林,等.重金属胁迫对植物生理生化的影响及其抗性机理研究[J].山西林业科技,2021,50(3):43-46.[32]周健民,沈仁芳.土壤学大辞典[M].北京:科学出版社出版,2013.[33]张秋芳,王果,杨佩艺,等.有机物料对土壤镉形态及其生物有效性的影响[J].应用生态学报,2002(12):1659-1662.[34]咸翼松.施用泥炭对土壤镉形态及其植物有效性的影响[D].杭州:浙江大学,2008.[35]陆中桂,黄占斌,李昂,等.腐植酸对重金属铅镉的吸附特征[J].环境科学学报,2018,38(9):3721-3729.[36]王意锟,郝秀珍,陈容.改良剂对重金属复合污染土壤的钝化修复研究[J].腐植酸,2010(4):6-8,27.[37]苏天明,李杨瑞,江泽普,等.泥炭对菜心:土壤系统中重金属生物有效性的效应研究[J].植物营养与肥料学报,2008(2):339-344.[38]范美蓉.赤泥对污染稻田重金属钝化行为及其肥效研究[D].长沙:湖南农业大学,2011.[39]刘霞,刘树庆,王胜爱.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,2003(3):393-400.[40]LAIRD D A,FLEMING P,DAVIS D D,et al.Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J].Geoderma,2010,158(3/4):443-449.[41]许剑臣,李晔,肖华锋,等.改良剂对重金属复合污染土壤的修复效果[J].环境工程学报,2017,11(12):6511-6517.[42]金睿,刘可星,艾绍英,等.生物炭复配调理剂对镉污染土壤性状和小白菜镉吸收及其生理特性的影响[J].南方农业学报,2016,47(9):1480-1487.[43]LI X,ZIADI N,BéLANGER G,et al.Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics[J].Canadian Journal of Soil Science,2011,91(4):521-531.[44]杨芸.重金属胁迫下园林植物耐性及其联合稳定修复研究[D].杭州:浙江农林大学,2019.[45]BARON M,ARELLANO J B,GORGE J L.Copper and photosystem Ⅱ:A controversial relationship[J].Physiologia Plantarum,2010,94(1):174-180.[46]刘硕,周启星.抗氧化酶诊断环境污染研究进展[J].生态学杂志,2008(10):17911798.[47]雷冬梅,段昌群,张红叶.矿区废弃地先锋植物齿果酸模在Pb、Zn污染下抗氧化酶系统的变化[J].生态学报,2009,29(10):5417-5423.[48]王志坤,廖柏寒,黄运湘,等.镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究[J].农业环境科学学报,2006(5):1143-1147.[49]王正维,和秋兰,吴玺,等.植物种植对土壤修复的影响研究进展[J].北方园艺,2022(12):130-137.

Memo

Memo:
-
Last Update: 2023-08-21