|Table of Contents|

Effects of PP333 on Seedling Growth and Chlorophyll Fluorescence Parameters of Prunus triloba

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年06
Page:
47-54
Research Field:
Publishing date:

Info

Title:
Effects of PP333 on Seedling Growth and Chlorophyll Fluorescence Parameters of Prunus triloba
Author(s):
QIN Jiajia1ZHANG Jihong2LUO Sumei3JIA Wanmei4WEI Xuying5
(1.Department of Landscape Engineering,Jiangxi Biotech Vocational College,Nanchang,Jiangxi 330200;2.Institute of Landscape Planning and Design,Jiangxi Academy of Forestry,Nanchang,Jiangxi 330013;3.Ganzhou Vegetable and Flower Research Institute,Gannan Academy of Sciences,Ganzhou,Jiangxi 341413;4.Jiangxi Provincial Center of Forest-related Ecological Project Construction,...
Keywords:
growth indexchlorophyll contentchlorophyll fluorescence parameterPP333Prunus triloba
PACS:
-
DOI:
10.11937/bfyy.20223375
Abstract:
Taking one-year-old Prunus triloba seedlings as experimental materials,single factor analysis was used to study the effects of PP333 on growth index,chlorophyll content and chlorophyll fluorescence parameters of Prunus triloba seedlings at different concentrations(0(CK),50,100,150,200 mg?L-1),in order to select the most favorable PP333 concentration for the growth of Prunus triloba seedlings.The results showed that PP333 could effectively reduce the height and increase the basal diameter of Prunus triloba seedlings,and the best effect was achieved at a concentration of 150 mg?L-1.The PP333 increased the chlorophyll content in leaves of Prunus triloba seedlings.As the concentration of PP333 increased,chlorophyll content showed a trend of increasing and then decreasing.Among them,compared with CK,chlorophyll a (Chl a),chlorophyll b (Chl b) and total chlorophyll (Chl t) increased by 20.58%-38.81%,16.28%-95.27% and 24.64%-54.99%,respectively.The PP333 solution was beneficial for the increase of electron transport rate (ETR),actual photochemical efficiency (ΦPSⅡ),photochemical quenching (qP) and maximum photochemical efficiency (Fv/Fm) and the decrease of non-photochemical quenching (qN) in leaves of Prunus triloba seedlings.Correlation analysis showed that Chl a,Chl b and Chl t were positively correlated with ETR,ΦPSⅡ,qP and basal diameter,and negatively correlated with qN and plant height.The comprehensive analysis showed that 150 mg?L-1 was the best concentration suitable for the growth and development of Prunus triloba seedlings.

References:

[1]陈有民.园林树木学[M].北京:中国林业出版社,1988.[2]YOHEI K,YU T,KEISVKE K,et al.Yield and dry matter productivity of Japanese and US soybean cultivars[J].Plant Prod Sci,2017,19(2):1-10.[3]吴琼,郑殿峰,冯乃杰,等.植物生长调节剂对玉米幼苗生长、光合荧光特性及产量的影响[J].西南农业学报,2021,34(3):520-528.[4]魏亚娟,刘宗奇,汪季,等.植物生长调节剂对榆叶梅生长及叶绿素荧光参数的调控效应[J].西北农林科技大学学报(自然科学版),2019,47(3):94-102,110.[5]金晓蕾,刘景辉,罗中旺,等.叶面喷施PP333和6-BA对甜荞花芽分化及内源激素的影响[J].西北植物学报,2019,39(11):1988-1997.[6]贾茵,张启翔,潘会堂,等.PP333、CCC、B9对盆栽小报春矮化效应研究[J].北京林业大学学报,2010,32(4):218-222.[7]杨福孙,孙爱花,王燕丹,等.生长延缓剂对槟榔苗期叶绿素含量及叶绿素荧光参数的影响[J].中国农学通报,2009,25(2):255-257.[8]姜英.植物生长延缓剂对金钱树生长及抗寒生理的影响研究[D].长沙:中南林业科技大学,2010.[9]陈晓光,王振林,彭佃亮,等.种植密度与喷施多效唑对冬小麦抗倒伏能力和产量的影响[J].应用生态学报,2011,22(6):1465-1470.[10]YUAN X Y,GUO P Y,QI X,et al.Safety of herbicide Sigma Broad on Radix Isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses[J].Pestic Biochem Physiol,2013,106(1/2):45-50.[11]APAGORGIOU G.Chlorophyll fluorescence:anintrinsicpr-obe of photosynthesis[M].New York:Academic Press,1975.[12]KRAUSE G H,WEIS F.Chlorophyll fluorescence and photosynthesis:Thebasics[J].Annu Rev Plant Biol,1991,42:313-349.[13]孙志勇,季孔庶.干旱胁迫对4个杂交鹅掌楸无性系叶绿素荧光特性的影响[J].西北林学院学报,2010,25(4):35-39.[14]杨晓青,张岁岐,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.[15]HAVAUX M,TARDY F.Temperature-dependent adjustment of the thermal stability of Photosystem Ⅱ in vivo:Possible involvement of xanthophyll-cycle pigments[J].Planta,1996,198(3):324-333.[16]刘红梅,新跃,李先喆,等.基于叶绿素荧光参数的籼型杂交稻杂种优势分析[J].植物生理学报,2014,50(6):855-860.[17]李淑英,王北洪,马智宏,等.土壤水分含量对欧李叶绿素荧光及光合特性的影响[J].安徽农学通报,2007,13(14):25-27.[18]施征,史胜青,张志翔,等.干旱与高盐对梭梭叶绿素荧光特性的影响[J].北京林业大学学报,2012,34(3):20-25.[19]赵丽丽,吴佳海,王普昶,等.高羊茅种质光合及叶绿素荧光参数对高温胁迫的响应[J].草地学报,2015,23(4):811-817.[20]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学报,1992,28(4):237-243.[21]时朝,郑彩霞,徐莎.PP333对桂花幼树生长及叶片抗氧化酶活性的影响[J].北方园艺,2010(12):152-155.[22]于永畅,张林,王厚新,等.ABA和PP333对国兰低温胁迫及恢复中光合作用和叶绿素荧光参数的影响[J].农学学报,2014(4):30-37.[23]王丽媛,郭素娟.2种植物生长调节剂对板栗叶片生理特性的影响[J].西南农业学报,2016,29(2):266-269.[24]高文蕊,胡银松,王瑞芳,等.干旱条件下叶黄素循环抑制剂对欧李光合指标的影响[J].森林工程,2015,31(2):71-74.[25]李源,何丙辉,毛文韬,等.多效唑对太阳扇叶片叶绿素含量及其荧光参数的影响[J].河南农业科学,2015,44(11):97-103.[26]高天鹏,王东,高海宁,等.保水剂对旱地马铃薯产量及叶片叶绿素荧光动力学参数的影响[J].兰州大学学报(自然科学版),2009,45(3):67-72.[27]杜永芹,田晓龙,甘建忠,等.CCC、PP333和B9对蜡梅矮化效应研究[J].北京林业大学学报,2015,37(S1):44-47.[28]尹赜鹏,孙孟超,商志伟,等.光合菌对干旱胁迫下欧李幼苗膜质和叶绿素荧光特性的影响[J].经济林研究,2011,29(4):41-45.

Memo

Memo:
-
Last Update: 2023-04-13