|Table of Contents|

Effects of Exogenous Manganese on Manganese Subcellular Distribution,Nutrient Content and Polyamine Metabolism of Malus robusta

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年24
Page:
33-41
Research Field:
Publishing date:

Info

Title:
Effects of Exogenous Manganese on Manganese Subcellular Distribution,Nutrient Content and Polyamine Metabolism of Malus robusta
Author(s):
ZHU XiaoqiangWU Xiangming
(School of Jiangsu Urban and Rural Construction College,Changzhou,Jiangsu 213147)
Keywords:
manganeseMalus robustasubcellular distributionmineral elementpolyamine
PACS:
-
DOI:
10.11937/bfyy.20222045
Abstract:
Taking Malus robusta as the test material,a pot experiment was used to set five Mn treatment levels (0,1,10,100,200 mg·kg-1),which were labelled as CK,Mn1,Mn10,Mn100,and Mn200,respectively.The effects of exogenous Mn application on Mn subcellular distribution,mineral elements,polyamine content,polyamine metabolizing enzymes and their related enzyme gene expression in Malus robusta were investigated,in order to provide reference for the detoxification mechanism of Mn in Malus robusta.The results showed that,compared with CK,the proportion of Mn in the cell wall and organelles gradually increased,and the proportion of Mn in the cytoplasm gradually decreased as the addition of exogenous Mn increased.Meanwhile,the high levels of Mn significantly reduced the Mg,Na,K and Ca contents of the plants and increased the Zn.Furthermore,the HPLC results showed that,except for spermine (Spm),which was significantly increased in insoluble covalently bound polyamines (PIS-PAs),the putrescine (Put),spermidine (Spd) and and Spm contents of other polyamine fractions showed a decreasing trend,which was both related to the activity of polyamine metabolizing enzymes (ADC,ODC,DAO,PAO) and polyamine metabolizing enzyme genes (PavADC,PsaODC,ParDAO,[STBX]PavPAO2[STBZ]).In conclusion,the Mn subcellular distribution and plant nutrient homeostasis of Malus robusta roots were influenced by exogenous Mn application,and the polyamine content,polyamine metabolizing enzymes and their related genes were involved in the detoxification process of Malus robusta under Mn stress.

References:

[1]孟祥萍,李春霞,国海燕,等.锰素浸种对小麦幼苗光合特性及其根系形态与活力的影响[J].西北植物学报,2016,36(4):745-750.[2]马生军,程新宇,谢景,等.锰营养对甘草光合特性和抗氧化酶活性的影响[J].现代中药研究与实践,2014,28(6):7-10.[3]吴耀文,杨灿鑫,李欣航,等.锰胁迫对野胡萝卜(Daucus carota)幼苗生长及理化特性的影响[J].北方园艺,2019(10):23-30.[4]许文博,邵新庆,王宇通,等.锰对植物的生理作用及锰中毒的研究进展[J].草原与草坪,2011,31(3):5-14.[5]MILLALEO R,REYES D M,ALBERDI M,et al.Excess manganese differentially inhibits photosystem I versus Ⅱ in Arabidopsis[J].Journal of Experimental Botany,2012,64(1):343-354.[6]SPARROW L A,UREN N C.Manganese oxidation and reduction in soils:Effects of temperature,water potential,pH and their interactions[J].Soil Research,2014,52(5):483-494.[7]ZHANG X,TONG T,TIAN B,et al.Physiological,biochemical and molecular responses of barley seedlings to aluminum stress[J].Phyton-International Journal of Experimental Botany,2019,88(3):253-260.[8]薛欢,刘志祥,严明理.植物超积累重金属的生理机制研究进展[J].生物资源,2019,41(4):289-297.[9]姜倩倩,杨洪强.多胺对镉胁迫下平邑甜茶根系损伤和NO生成的影响[J].北方园艺,2021(21):31-38.[10]张灵,陶亚军,方琳,等.植物多胺的代谢与生理研究进展[J].植物生理学报,2020,56(10):2029-2039.[11]康虎虎,刘晓宏,张馨予,等.树木年轮汞记录:进展、问题和展望[J].应用生态学报,2021,32(10):3733-3742.[12]GAO Y,LIU,F,WANG K,et al.Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources[J].Tree Genetics and Genomes,2015,11(5):106.[13]何玉莲.一种园林树苗无土栽培培养液及其制备方法[P].安徽:CN107365212A,2017-11-21.[14]WAN H,DU J,HE J,et al.Copper accumulation,subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks[J].Tree Physiology,2019(7):7.[15]刘永霞.硅对金丝小枣盐胁迫的缓解效应及其机理[D].南京:南京林业大学,2007.[16]CHAO L,LIANG B,CONG C,et al.Exogenous melatonin improved potassium content in Malus under different stress conditions[J].Journal of Pineal Research,2016,61(2):218-229.[17]胡亚,王延秀,朱燕芳,等.高锌胁迫对八棱海棠幼苗锌积累、分配与9个MTP基因表达的影响[J].园艺学报,2017,44(8):1548-1558.[18]申须仁,董名扬,王朝勇,等.高锰胁迫对香根草矿质元素吸收及光合系统的影响[J].农业环境科学学报,2019,38(10):2297-2305.[19]QI D,LIANG M,JIANG F,et al.Effects of exogenous manganese (Mn) on mineral elements,polyamines and antioxidants in apple Rootstock Malus robusta Rehd.〖KG-*4〗[J].Phyton-International Journal of Experimental Botany,2020,89(4):943-955.[20]FAN J L,WEI X Z,WAN L C,et al.Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J].Journal Plant Physiol,2011,168(11):1157-1167.[21]唐敏,张欣,谭欣蕊,等.锌在3种乔木中的积累及其亚细胞分布和化学形态[J].应用生态学报,2021,32(12):4298-4306.[22]MA J,HONG M C,CONG W H,et al.A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells[J].New Phytologist,2015,206:1063-1074.[23]曹本福,姜海霞,刘丽,等.丛枝菌根菌丝网络在植物互作中的作用机制研究进展[J].应用生态学报,2021,32(9):3385-3396.[24]BLAMEY F P C,HERNANDEZ S,M,CHENG M,et al.Synchrotron-based techniques shed light on mechanisms of plant sensitivity and tolerance to high manganese in the root environment[J].Plant Physiology,2015,169:726.[25]MILLALEO R,REYES D M,IVANOV A G,et al.Manganese as essential and toxic element for palnts:Transport,accumulation and resistance mechanisms[J].Journal of Soil Science and Plant Nutrition,2010,10(4):476-494.[26]陈军,关欣,范翠枝,等.盐胁迫对番茄种子萌发中多胺形态变化和抗氧化的影响[J].土壤学报,2021,58(6):1598-1609.[27]沈永娟,张辉,王倩,等.植物中多胺的合成代谢及其分子生物学水平研究进展[J].保鲜与加工,2018,18(6):157-161.[28]唐凝,王华瑞,裴冬丽.外源亚精胺对铜离子胁迫下小麦幼苗生长及抗氧化酶的影响[J].东北农业科学,2022,47(1):22-25.[29]ROY P,NIYOGI K,SENGUPA D N,et al.Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars[J].Plant Science,2005,168(3):583-591.[30]QIAO X,ZHENG Z,ZHANG L,et al.Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.:Subcellular distribution,polyamines and proline[J].Chemosphere,2015,120:179-187.[31]TAKAHASHI T.Polyamines:Ubiquitous polycations with unique roles in growth and stress responses[J].Annals of Botany,2010,105(1):1-6.

Memo

Memo:
-
Last Update: 2023-01-22