|Table of Contents|

Dry Matter Accumulation Model of Eggplant in Solar Greenhouse Under Different Nitrogen Levels

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年01
Page:
48-54
Research Field:
Publishing date:

Info

Title:
Dry Matter Accumulation Model of Eggplant in Solar Greenhouse Under Different Nitrogen Levels
Author(s):
WANG Zepeng12LIANG Zhiguo12FAN Fengcui1LIU Shengyao1JIA Songnan1QIN Yong2
(1.Institute of Agricultural Information and Economics,Hebei Academy of Agriculture and Forestry Sciences,Shijiazhuang,Hebei 050051;2.College of Horticulture,Xinjiang Agricultural University,Urumqi,Xinjiang 830052 )
Keywords:
eggplantapplication amount of nitrogen fertilizerproduct of thermal effectiveness and PARmodel of dry matter accumulation
PACS:
-
DOI:
10.11937/bfyy.20221926
Abstract:
The research was based on the drip irrigation water-saving irrigation system with the material of ‘Qieza 2’,five treatments with different nitrogen application levels were set up.The effects of temperature and photosynthetic radiation on eggplant growth were also considered,and a simulation model of dry matter accumulation in eggplant in solar greenhouse which was based on the product of thermal effectiveness and photosynthesis active radiation was established,in order to provide reference for the light and temperature environment control of eggplant production in the solar greenhouse.The results showed that the RMSE of the measured and simulated dry matter accumulation of eggplant in the whole plant in solar greenhouse in F1-F5 treatment facilities was 61.41-135.37 kg?hm-2 and the R2 between the 1∶1 straight lines in plants was 0.997 2-0.999 6;the standard error RMSE and the R2 between the 1∶1 straight lines in stem was 60.10-65.62 kg?hm-2 and 0.973 2-0.988 3;the standard error RMSE and the R2 between the 1∶1 straight lines in leaf was 57.50-122.28 kg?hm-2 and 0.977 5-0.991 0;the standard error RMSE and the R2 between the 1∶1 straight lines in fruit was 134.21-162.02 kg?hm-2 and 0.982 6-0.991 2.The model had high accuracy and it could predict the dry matter accumulation in the whole plant and each organ of the eggplant under each nitrogen application treatment.

References:

[1]王惠哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005(1):55-58.[2]李化龙,陈端生,杨合法.日光温室黄瓜叶片和果实相关参数的模拟[J].中国农业大学学报,2003(S1):76-79.[3]孙忠富,陈人杰.温室作物模型研究基本理论与技术方法的探讨[J].中国农业科学,2002(3):320-324.[4]谭文.不同温光对设施黄瓜生长和品质的影响及模拟研究[D].南京: 南京信息工程大学,2016.[5]王贺垒,李家曦,范凤翠,等.华北地区设施茄子蒸散量估算模型及作物系数确定[J].中国生态农业学报,2018,26(12):1819-1827.[6]王贺垒,韩宪忠,范凤翠,等.基于有效积温的设施茄子营养生长期蒸散量模拟系统[J].节水灌溉,2019(2):11-17.[7]石小虎,蔡焕杰,赵丽丽,等.不同水分处理下基于辐热积的温室番茄干物质生产及分配模[J].农业工程学报,2016,32(3):69-77.[8]李永秀,罗卫红,倪纪恒,等.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量[J].农业工程学报,2005(12):131-136.[9]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005(8):1629-1635.[10]李天来,仇家奇,罗新兰,等.日光温室番茄干物质分配模拟模型研究[J].沈阳农业大学学报,2010,41(4):398-402.[11]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003(4):241-244.[12]孙忠富,陈晴,王迎春.不同光照条件下温室黄瓜干物质生产模拟与试验研究[J].农业工程学报,2005(S2):50-52.[13]杜凤焕.负压灌溉条件下设施茄子需水规律研究[D].保定: 河北农业大学,2019.[14]王贺垒.基于蒸散模型的设施茄子灌溉决策支持系统[D].保定: 河北农业大学,2019.[15]明村豪,蒋芳玲,王广龙,等.黄瓜壮苗指标与辐热积关系的模拟模型[J].农业工程学报,2012,28(9):109-113.[16]吴杨焕.密度调控下辐热积对棉花生育进程及产量的影响[D].石河子: 石河子大学,2015.[17]王丹丹,吕振宁,李坚,等.基于辐热积的日光温室不同茬次袋培番茄干物质模型比较[J].西北农业学报,2018,27(2):238-243.[18]徐云民.茄子生长习性与环境条件[J].吉林农业,2017(12):86.[19]张亚晶.茄子生长习性[J].农民致富之友,2015(22):199.[20]王雪,张阔,孙志梅,等.氮素水平对萝卜干物质累积特征及源库活性的影响[J].中国农业科学,2014,47(21):4300-4308.[21]何昌福.连续施氮对旱地覆膜马铃薯干物质积累与分配以及对根系生长的影响[D].兰州:甘肃农业大学,2016.[22]李艳大,汤亮,陈青春,等.水稻地上部干物质积累动态的定量模拟[J].应用生态学报,2010,21(6):1504-1510.[23]张中典,张大龙,李建明,等.辐热积驱动的温室甜瓜作物系数模型[J].西北农林科技大学学报(自然科学版),2017,45(2):128-134,142.[24]李莉,郭斌.基于辐热积的温室番茄干物质生产及分配模型[J].江苏农业科学,2019,47(5):129-132.

Memo

Memo:
-
Last Update: 2023-01-28