|Table of Contents|

Isolation and Identification of Four Pseudomonas strains From Hippophae rhamnoides subsp.sinensis Rousi and Comparison of Their Growth Promoting Ability

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年01
Page:
69-75
Research Field:
Publishing date:

Info

Title:
Isolation and Identification of Four Pseudomonas strains From Hippophae rhamnoides subsp.sinensis Rousi and Comparison of Their Growth Promoting Ability
Author(s):
GAO PeiGUO JiahuiHE YongchaoWANG BingxianYE GuishengMA Yuhua
(College of Agriculture and Animal Husbandry,Qinghai University,Xining,Qinghai 810016)
Keywords:
wild Hippophae rhamnoides subsp.sinensis Rousirhizosphere microorganismsidentification of strainsgrowth promoting bacteria
PACS:
-
DOI:
10.11937/bfyy.20221622
Abstract:
Taking Qinghai wild Hippophae rhamnoides subsp.sinensis Rousi rhizosphere soil as material,strains with certain growth promoting ability were screened out.The rhizosphere growth promoting bacteria of wild Hippophae rhamnoides subsp.sinensis Rousi were isolated by traditional culture method,and the strains were purified by plate scribing method,in order to create conditions for excavating high-efficiency rhizosphere growth promoting strains with potential application value.The results showed that morphological characteristics,physiological and biochemical tests,and 16S rDNA,the phosphorus removal capacity of the isolated strains was determined by the phosphorus removal method,and the potassium removal capacity was determined by the atomic absorption meter.Four strains of bacteria were isolated.According to the physiological,biochemical and 16S rDNA molecular identification results,the four strains belonged to Pseudomonas.The ability test results showed that the radius of K7 dissolved organic phosphorus was 13.71 mm,the radius of K28 dissolved inorganic phosphorus was 7.62 mm,and the potassium dissolution rate of K39 was 14.33 μg?mL-1.The three strains obtained were efficient strains for dissolving organic phosphorus,inorganic phosphorus and potassium respectively,indicating that the three strains could be used as potential materials for developing high-efficiency bacterial fertilizer.

References:

[1]JUNG T,DOBLER G.First report of little leaf disease caused by Phytophthora cinnamomi on Pinus occidentalis in the dominican republic[J].Plant Dis,2002,86(11):1275.[2]穆文强,康慎敏,李平兰.根际促生菌对植物的生长促进作用及机制研究进展[J].生命科学,2022,34(2):118-127.[3]BHATTACHARYYA P N,JHA D K.Plant growth-promoting rhizobacteria (PGPR):Emergence in agriculture[J].World J Microbiol Biotechnol,2012,28(4):1327-1350.[4]马海林,邢尚军,刘方春,等.冬枣(Ziziphus jujube Mill.)根际3株促生细菌的筛选与鉴定[J].应用与环境生物学报,2013,19(4):650-654.[5]杨凯,刘红梅,肖正午.土壤改良剂及其在各种土壤改良应用的研究进展[J].安徽农业科学,2018,46(21):39-41.[6]李坤,都桂芳,张秀荣.浅议沙棘属植物的起源与演化[J].沙棘,1994,7(3):1-3.[7]张爱梅,孙坤,达文燕.马衔山两种不同生境沙棘根际微生物研究[J].西北师范大学学报(自然科学版),2008(1):69-73.[8]KLOEPPER J W,SCHROTH M N.Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora[J].Phytopathology,1981,71:1020-1024[9]曲东明,王双,韩善华.沙棘共生固氮根瘤及其内生弗兰克氏菌[J].西北植物学报,1998(1):63-68.[10]张小民,王岚,林美珍,等.论沙棘根系与功能Ⅱ:Frankia菌侵染和结瘤[J].沙棘,2006(1):1-11.[11]张爱梅,殷一然,孔维宝,等.西藏沙棘5种不同组织内生细菌多样性[J].生物多样性,2021,29(9):1236-1244.[12]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.[13]布坎南,吉本斯.伯杰细菌鉴定手册[M].8版.北京:科学出版社,1984.[14]MAJEED A,ABBASI M K,HAMEED S,et al.Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion[J].Front Microbiol,2015(6):198.[15]陈峥,刘波,邓文琼,等.14株芽胞杆菌菌株的分子鉴定及其促生机理分析[J].热带作物学报,2021,42(3):789-799.[16]池景良,郝敏,王志学,等.解磷微生物研究及应用进展[J].微生物学杂志,2021,41(1):1-7.[17]孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程,2006,26(3):39-42.[18]王珣珏,黄巧云,蔡鹏,等.解钾菌解钾效率检测方法的比较[J].华中农业大学学报,2016,35(1):81-85.[19]张爱梅.沙棘属植物根际可培养微生物的初步研究[D].兰州:西北师范大学,2008.[20]GULATI A,RAHI P,VYAS P.Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas[J].Curr Microbiol,2008,56(1):73-79.[21]张晶晶,李建贵,郭艺鹏,等.新疆核桃根际土壤中解磷菌的分离筛选及鉴定[J].经济林研究,2015,33(2):57-62.[22]郭英,杨萍,张丹雨,等.野大豆多功能根际促生菌的筛选鉴定和促生效果研究[J].生物技术通报,2018,34(10):108-115.[23]陈倩颖,胡子全,刘连生,等.6株解有机磷细菌的分离鉴定[J].安徽农业大学学报,2009,36(3):417-421.[24]张成省,陈雪,张玉芹,等.烟草根际土壤中解钾细菌的分离与多样性分析[J].中国生态农业学报,2013,21(6):737-743.[25]SUGUMARAN P,JANARTHANAM B.Solubilization of potassium containing minerals by bacteria and their effect on plant growth[J].World J Agric Sci,2007,3(3):350-355.[26]MIKHAILOUSKAYA N,TCHERHYSH A.K-mobilizing bacteria and their effect on wheat yield[J].Agronomijas Vestis,2005(8):154-157.[27]ANSARI F A,JABEEN M,AHMAD I.Pseudomonas azotoformans FAP5,a novel biofilm-forming PGPR strain,alleviates droμght stress in wheat plant[J].International Journal of Environmental Science and Technology,2021,18(12):1-16.[28]RAMETTE A,MONNE-LOCCOZ Y,DFAGO G.Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot[J].FEMS Microbiol Ecol,2003,44(1):35-43.[29]VACHERON J,MONNE-LOCCOZ Y,DUBOST A,et al.Fluorescent pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere[J].Front Plant Sci,2016(7):1212.[30]王欢,韩丽珍.4株茶树根际促生菌菌株的鉴定及促生作用[J].微生物学通报,2019,46(3):548-562.[31]MARS A E,GORISSEN J P,van DEN B I,et al.Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor[J].Appl Microbiol Biotechnol,2001,56(1/2):101-107.[32]MOLLA M A Z,CHOWDHURY A A,ISLAM A,et al.Microbial mineralization of organic phosphate in soil[J].Plant and Soil,1984,78(3):393-399.[33]林启美,赵小蓉,孙焱鑫,等.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000(1):34-37.[34]NIJKAMP K,van LUIJK N,de BONT J A,et al.The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose[J].Appl Microbiol Biotechnol,2005,69(2):170-177.

Memo

Memo:
-
Last Update: 2023-01-31