|Table of Contents|

Characteristics of Vegetation Cover Change in Xinjiang Based on NDVI

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年22
Page:
145-154
Research Field:
Publishing date:

Info

Title:
Characteristics of Vegetation Cover Change in Xinjiang Based on NDVI
Author(s):
MA Nan1BAI Tao12CAI Zhaozhao12LI Dongya1
(1.College of Computer and Information Engineering,Xinjiang Agricultural University,Urumqi,Xinjiang 830052;2.Xinjiang Agricultural Informatization Engineering Technology Research Center,Urumqi,Xinjiang 830052)
Keywords:
XinjiangvegetationGEEspace-time changechange trend
PACS:
-
DOI:
10.11937/bfyy.20221534
Abstract:
The vegetation ecosystem in Xinjiang is fragile,which is the key area for long-term protection and attention.With the help of GEE platform,the normalized vegetation index (NDVI) data provided by NASA were obtained,and the spatial-temporal changes and future trends of vegetation cover in Xinjiang during the growing season (April to October) from 2000 to 2021 were studied by means of means method,difference method,trend analysis method,stability analysis method,Hurst index and other methods.The results showed that,1) the vegetation coverage in Xinjiang showed a slight increase at the rate of 0.001 4 each year in the past 22 years,with a higher spatial distribution in the north and northwest and a lower spatial distribution in the south and southeast.2) In Xinjiang,85.2% of the vegetation cover increased,while 14.8% of the vegetation cover decreased.The vegetation cover increased significantly in Tacheng Area,Yili Kazak Autonomous Prefecture,northern Bayingolin Mongolian Autonomous Prefecture and the oases around the basin.The significant decrease was found in Shihezi,Urumqi,Kashgar,Hotan,etc.3) In recent 22 years,the vegetation coverage in Xinjiang fluctuates significantly.The average hurst index is 0.44,indicating strong reverse persistence.Therefore,ecological restoration and protection of vegetation should be further strengthened in the future.

References:

[1]卢乔倩,江涛,柳丹丽,等.中国不同植被覆盖类型NDVI对气温和降水的响应特征[J].生态环境学报,2020,29(1):23-34.[2]范泽孟.青藏高原植被生态系统垂直分布变化的情景模拟[J].生态学报,2021,41(20):8178-8191.[3]桑国庆,唐志光,邓刚,等.基于MODIS NDVI时序数据的湖南省植被变化研究[J].长江流域资源与环境,2021,30(5):1100-1109.[4]龙爽,郭正飞,徐粒,等.基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J].遥感技术与应用,2020,35(2):326-334.[5]胡孟珂,于欢,孔博,等.2001—2020年嘉陵江流域植被覆盖度时空变化特征[J].人民长江,2022,53(1):82-89,96.[6]李彩霞,胡砚霞,邓帆,等.湖北省植被覆盖度时空变化特征与影响因素分析[J].长江流域资源与环境,2021,30(8):1829-1838.[7]李灏欣,万华伟,孙林,等.新疆生态系统健康遥感评估及关键驱动因子研究[J].干旱区地理,2021,44(2):460-470.[8]李红昌,徐鑫,崔金丽.“一带一路”背景下新亚欧大陆桥对新疆与中亚国家国际贸易的影响:基于走廊绩效及运输费用的分析[J].铁道经济研究,2021(2):1-7,14.[9]蔡朝朝,淮永建,白涛,等.基于NDVI的新疆草地覆盖变化特征[J].应用基础与工程科学学报,2020,28(6):1369-1381.[10]姜萍,胡列群,肖静,等.新疆植被NDVI时空变化及定量归因[J].水土保持研究,2022,29(2):212-220,242.[11]崔灿,郭英,沈彦俊.新疆荒漠植被的时空分布变化及其驱动因素[J].中国生态农业学报(中英文),2021,29(10):1668-1678.[12]GORELICK N,HANCHER M,DIXON M,et al.Google earth engine:Planetary-scale geospatial analysis for everyone[J].Remote Sensing of Environment,2017,202:18-20.[13]肖真,丁明军,刘怡媛,等.Google Earth Engine平台下的1990—2019年江西省森林覆被连续变化分析[J].测绘通报,2022(3):18-22.[14]王远弘,吴新萍,买买提艾力·买买提依明,等.塔克拉玛干沙漠地表温度时空变化特征研究[J].湖北农业科学,2022,61(5):152-159.[15]慈晖,张强.新疆NDVI时空特征及气候变化影响研究[J].地球信息科学学报,2017,19(5):662-671.[16]贾宝全.基于TM卫星影像数据的北京市植被变化及其原因分析[J].生态学报,2013,33(5):1654-1666.[17]齐亚霄,张飞,陈瑞,等.2001—2015年天山北坡植被覆盖动态变化研究[J].生态学报,2020,40(11):3677-3687.[18]CAI B F,YU R.Advance and evaluation in the long time series vegetation trends research based on remote sending[J].Journal of Remote Sensing,2009,13(6):1170-1186.[19]王君,杨晓梅,隋立春,等.西安市1995—2016年植被覆盖度动态变化监测及景观格局分析[J].生态科学,2019,38(6):81-91.[20]王桂钢,周可法,孙莉,等.近10a新疆地区植被动态与R/S分析[J].遥感技术与应用,2010,25(1):84-90.[21]杜加强,赵晨曦,贾尔恒·阿哈提,等.近30a新疆月NDVI动态变化及其驱动因子分析[J].农业工程学报,2016,32(5):172-181.[22]苏红军.2000年-2018年新疆植被指数的时空特征及其与气候因子的关系研究[D].乌鲁木齐:新疆大学,2021.[23]汤三玲.近40年新疆气温和降水的时空变化特征[D].成都:四川师范大学,2021.[24]杨青.全国生态系统重要性评价及空间特征研究[D].贵阳:贵州师范大学,2020.[25]陈国龙,杨瑞霞,王普,等.近20a三北地区植被资源时空变化特征探究[J].云南大学学报(自然科学版),2021,43(5):1028-1037.

Memo

Memo:
-
Last Update: 2023-01-19