|Table of Contents|

Analysis of Key Metabolites of Lily Against Bradysia tarda Based on Metabolomics

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年20
Page:
66-75
Research Field:
Publishing date:

Info

Title:
Analysis of Key Metabolites of Lily Against Bradysia tarda Based on Metabolomics
Author(s):
WANG WeidongLI XueyanZHOU LihongHU XinyingBAI YiguangYANG Yingdong
(Institute of Flowers Research,Liaoning Academy of Agricultural Sciences,Shenyang,Liaoning 110161)
Keywords:
lilyBradysia tardametabolomicskey metabolitesmetabolic pathways
PACS:
-
DOI:
10.11937/bfyy.20221377
Abstract:
The oriental hybrid lily ‘Siberia’ susceptible to Bradysia tarda and the LA lily ‘Aladdin′s Dazzle’ highly resistant to Bradysia tarda were used as experimental materials,the changes of the two varieties at the metabolic group level before and after infection by Bradysia tarda were studied by liquid chromatography-mass spectrometry (LC/MS),in order to provide reference for clarify the key metabolites and metabolic pathways of lily against Bradysia tarda.The results showed that,a total of 32 differential metabolites were screened from susceptible varieties,including 24 up-regulated and 8 down-regulated.A total of 40 differentially expressed metabolites were screened from Bradysia tarda infection resistant varieties,of which 30 were up-regulated and 10 were down-regulated.Differential metabolites mainly include carboxylic acids and derivatives,coumarins and derivatives,phenols,organic oxygen compounds,steroids and derivatives,aliphatic acyl substances,benzene and substituted derivatives,keto acids and derivatives,flavonoids,hydroxy acids and derivatives,indoles and derivatives.Through the analysis of differential metabolites and combined with previous research results,coumarin,umbelliferone,indole and leucopelargonidin were preliminarily screened as the key metabolites of lily against Bradysia tarda.KEGG pathway analysis showed that the main metabolic pathways involved in key metabolites were biosynthesis of secondary metabolites and benzoxazinoid biosynthesis.

References:

[1]杨迎东,王伟东,白一光,等.百合种球消毒害虫灭杀试验[J].北方园艺,2017(5):109-113.[2]石宝才,路红,宫亚军,等.韭菜迟眼蕈蚊的识别与防治[J].中国蔬菜,2010(11):21-22.[3]苟玉萍,刘倩,刘长仲.不同寄主植物对异迟眼蕈蚊生长发育和繁殖的影响[J].植物保护,2015,41(1):28-32.[4]钟涛,许国庆,刘培斌,等.辽宁地区韭菜根蛆发生与为害规律[J].植物保护,2018,44(4):144-150,176.[5]吴青君,于毅,谷希树,等.韭菜根蛆的发生危害及综合防治技术研究[J].应用昆虫学报,2016,53(6):1165-1173.[6]安立娜,赵鑫,董立新.0.5%藜芦碱可溶液剂对韭蛆的生物活性及安全性评价[J].农药,2014,53(12):924-926.[7]李贤贤,马晓丹,薛明,等.不同药剂对韭菜迟眼蕈蚊致毒的温度效应及田间药效[J].北方园艺,2014(9):125-128.[8]李娜娜,杨建平.植物源农药对韭菜迟眼蕈蚊幼虫的室内毒力测定和田间防治效果[J].山东农业科学,2012,44(7):101-103.[9]张鹏,王秋红,赵云贺,等.韭菜迟眼蕈蚊对十三种蔬菜为害调查及趋性研究[J].应用昆虫学报,2015,52(3):743-749.[10]黎娟华,孙海彦,赵平娟,等.南方根结线虫食道腺表达基因7E12影响植物的初步研究[J].中国农学通报,2013,29(27):148-153.[11]FIEHN O,KOPKA J,DORMANN P,et al.Metabolite profiling for plant functional genomics[J].Nature Biotechnology,2000,18(11):1157-1161.[12]淡墨,高先富,谢国祥,等.代谢组学在植物代谢研究中的应用[J].中国中药杂志,2007,32(22):2337-2341.[13]ZHANG J,YANG D H,LI M X,et al.Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress[J].PLoS One,2016,11(7):1-17.[14]李明霞,郭瑞,焦阳,等.代谢组学及其在植物盐胁迫研究中的应用[J].分子植物育种,2017,15(5):1862-1867.[15]CRAMER G R,ERGUL A,GRIMPLET J,et al.Water and salinity stress in grapevines:Early and late changes in transcript and metabolite profiles[J].Functional and Integrative Genomics,2007,7(2):111-134.[16]冯敏,张文智,张雯霞,等.植物代谢组学技术在中药资源研究中的应用[J].药物评价研究,2020,43(4):785-789.[17]ROBINSON A R,UKRAINETZ N K,KANG K Y,et al.Metabolite profiling of douglas-fir (Pseudotstuga menziesii) field trials reveals strong environmental and weak geneti cvariation[J].New Phytologist,2007,174(4):762-773.[18]LEISS K A,FEDRICA M,YOUNG-HAT C,et al.Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum[J].Plant Physiology,2009,150(3):1567-1575.[19]KERSTEN B,ANDREA G,J-RG-PETER S,et al.Integrated transcriptomics and metabolomics decipher differences in the resistance of pedunculate oak to the herbivore Tortrix viridana[J].Bmc Genomics,2013,14(1):737.[20]梅闯,闫鹏,艾沙江·买买提,等.新疆野苹果次生代谢产物对虫害胁迫的响应[J].新疆农业科学,2019,56(4):678-684.[21]QI J F,SUN G L,WANG L,et al.Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high dimensional biological data[J].Plant Cell Environ,2016,39(6):1749-1766.[22]黄洁,刘晓华,管洁,等.百合分子育种研究进展[J].园艺学报,2012,39(9):1793-1808.[23]林敬晶.腊梅凝集素基因Cplectin在百合中的表达及抗虫性初步鉴定[D].重庆:西南大学,2008.[24]唐东芹,钱虹妹,唐克轩.根瘤农杆菌介导半夏凝集素基因pBIXPTA对百合的转化[J].上海交通大学学报(农业科学版),2004,22(2):135-138.[25]SMITH C A,WANT E J,O′MAILLE G,et al.XCMS:Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment,matching,and identification[J].Anal Chem,2006;78(3):779-787.[26]CHEN Y,ZHANG R,SONG Y,et al.RRLC-MS/MS-based meta-bonomics combined with in-depth analysis of metabolic correlation network:Finding potential biomarkers for breast cancer[J].Analyst,2009,134(10):2003-2011.[27]WORLEY B,POWERS R.Multivariate analysis in metabolomics[J].Current Metabolomics,2013,1(1):92-107.[28]朱俊洪,程立生.植物次生性物质与植物抗虫性的关系及其在害虫防治中的应用前景[J].热带生物学报,2001,7(1):26-32.[29]张珊珊,翟伟卜,郭慧敏,等.香豆素合成途径关键酶基因Ghpal、Ghc4h和Gh4cl在棉花抗链格孢菌中的作用[J].植物病理学报,2017,47(2):214-223.[30]OLSON M M,ROSELAND C R.Induction of the coumarins scopoletin and ayapin in sunflower by insect-feeding stress and effects coumarins on the feeding of sunflower beetle (Coleoptera:Chrysomelidae)[J].Environmental Entomology,1991,20(4):1166-1172.[31]章冰川,罗金香,赖婷,等.香豆素类化合物对朱砂叶螨的触杀活性及定量构效关系研究[J].农药学学报,2016,18(1):37-48.[32]焦淑清,徐成,冯诗杨,等.伞形花内酯的微波合成工艺优化研究[J].黑龙江医药科学,2013,36(5):26-27.[33]白雪那,卜春亚,谷继成,等.伞形花内酯对植物病原真菌的抑制作用[J].植物保护,2012,38(2):42-45.[34]MAZIMBA O.Umbelliferone:Sources,chemistry and bioactivities review[J].Bulletin of Faculty of Pharmacy,Cairo University,2017,55(2):223-232.[35]张华峰.松墨天牛为害对马尾松针叶化学成分的影响及其成虫扩散能力的研究[D].福州:福建农林大学,2004.[36]骆钧飞,徐星,郑俊良.吲哚C-H芳基化反应的研究进展[J].有机化学,2018,38:363-377.[37]GUO J F,GUO J Q,HE K L,et al.Physiological responses induced by Ostrinia furnacalis (Lepidoptera:Crambidae) feeding in maize and their effects on O.furnacalis performance[J].Journal of Economic Entomology,2017,110(2):739-747.

Memo

Memo:
-
Last Update: 2022-12-21