|Table of Contents|

Study on Driving Factors and Decoupling Effect of Agricultural Carbon Emission in Shaanxi Province Under the Background of ‘Double Carbon’ Target

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年20
Page:
133-140
Research Field:
Publishing date:

Info

Title:
Study on Driving Factors and Decoupling Effect of Agricultural Carbon Emission in Shaanxi Province Under the Background of ‘Double Carbon’ Target
Author(s):
LU Dongning1ZHANG Yu1LEI Shibin2
(1.School of Economics and Management,Yan′an University,Yan′an,Shaanxi 716000;2.Public Course Teaching Department,Yan′an Vocational and Technical College,Yan′an,Shaanxi 716000)
Keywords:
agricultural carbon emissionsLMDI modeldecoupling effectlow-carbon agricultureShaanxi Province
PACS:
-
DOI:
10.11937/bfyy.20221212
Abstract:
Agricultural low-carbon development is of great significance for Shaanxi Province to achieve the goal of ‘double carbon’.Based on 21 kinds of carbon emission sources in agricultural production,the agricultural carbon emission of Shaanxi Province from 2006 to 2020 was measured,the driving factors of agricultural carbon emission were analyzed by LMDI model,and the decoupling coefficient of agricultural carbon emission in Shaanxi Province was calculated by Tapio decoupling model.The results showed that,1) the agricultural carbon emission in Shaanxi Province showed an inverted ‘U’ trend,which first increased and then decreased slowly,and the carbon emission produced by agricultural land use was the largest.2) Agricultural economic development was positively driving agricultural carbon emission,and agricultural production efficiency,agricultural production structure and labor force all inhibit agricultural carbon emission.3) There were four decoupling phenomena between agricultural carbon emission and economic development in Shaanxi Province,weak decoupling,strong decoupling,expansion connection and expansion negative decoupling.After 2016,it was mainly strong decoupling,indicating that the agricultural low-carbon development strategy adopted by Shaanxi Province had achieved certain results.In the future,Shaanxi Province should continue to promote agricultural low-carbon development in many aspects.

References:

[1]刘月仙.全球农业碳排放趋势及中国的应对措施[J].世界农业,2013,405(1):81-84.[2]马永喜,孙亚丽.碳减排约束下区域农业生产投入及其环境效应:基于价格内生局部均衡模型的模拟[J].湖南农业大学学报(社会科学版),2021,22(5):15-23.[3]田云,张俊飚,李波.中国农业碳排放研究:测算、时空比较及脱钩效应[J].资源科学,2012,34(11):2097-2105.[4]陈胜涛,张开华,张岳武.农业碳排放绩效的测量与脱钩效应[J].统计与决策,2021,37(22):85-88.[5]曹俊文,曹玲娟.江西省农业碳排放测算及其影响因素分析[J].生态经济,2016,32(7):66-68,167.[6]张振家.新形势下辽宁农业碳排放测度与低碳化发展对策研究[J].农业经济,2022(1):12-14.[7]陈红,王浩坤,秦帅.农业碳排放的脱钩效应及驱动因素分析:以黑龙江省为例[J].科技管理研究,2019,39(17):247-252.[8]桂河,李静,尚梦媛.“双碳”背景下的宁夏农业碳排放时序特征、驱动机理与脱钩效应研究[J].中南林业科技大学学报(社会科学版),2021,15(6):37-44.[9]黎孔清,马豆豆,李义猛.基于STIRPAT模型的南京市农业碳排放驱动因素分析及趋势预测[J].科技管理研究,2018,38(8):238-245.[10]旷爱萍,胡超.广西农业碳排放时空特征及经济关联性研究:基于投入视角[J].资源开发与市场,2021,37(6):663-669.[11]李波,杜建国,刘雪琪.湖北省农业碳排放的时空特征及经济关联性[J].中国农业科学,2019,52(23):4309-4319.[12]曹俐,王莹,雷岁江.山东省农业碳排放的时空特征与脱钩弹性研究[J].江苏农业科学,2020,48(17):250-256.[13]刘丽娜,王春妤,袁子薇,等.区域农业碳排放LMDI分解和脱钩效应分析[J].统计与决策,2019,35(23):95-99.[14]李波,张俊飚,李海鹏.中国农业碳排放时空特征及影响因素分解[J].中国人口·资源与环境,2011,21(8):80-86.[15]闵继胜,胡浩.中国农业生产温室气体排放量的测算[J].中国人口·资源与环境,2012,22(7):21-27.[16]田云,张俊飚,尹朝静,等.中国农业碳排放分布动态与趋势演进:基于31个省(市、区)2002-2011年的面板数据分析[J].中国人口·资源与环境,2014,24(7):91-98.[17]WEST T O,MARLAND G.A synthesis of carbon sequestration,carbon emissions,and net carbon flux in agriculture:Comparing tillage practices in the United States[J].Agriculture,Ecosystems & Environment,2002,91(1):217-232.[18]王智平.中国农田N2O排放量的估算[J].农村生态环境,1997(2):52-56.[19]王少彬,苏维瀚.中国地区氧化亚氮排放量及其变化的估算[J].环境科学,1993(3):42-46,92-93.[20]熊正琴,邢光熹,鹤田治雄,等.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J].中国农业科学,2002(9):1104-1108.[21]邱炜红,刘金山,胡承孝,等.种植蔬菜地与裸地氧化亚氮排放差异比较研究[J].生态环境学报,2010,19(12):2982-2985.[22]张小平,王龙飞.甘肃省农业碳排放变化及影响因素分析[J].干旱区地理,2014,37(5):1029-1035.[23]张志高,袁征,张翠贞,等.河南省农业碳排放时空特征与脱钩弹性研究[J].江苏农业科学,2017,45(17):281-285.[24]管大海,张俊,王卿梅,等.气候智慧型农业及其对我国农业发展的启示[J].中国农业科技导报,2017,19(10):7-13.

Memo

Memo:
-
Last Update: 2022-12-24