|Table of Contents|

Metabonomic Analysis of Platycodon grandiflorus Leaves Under Drought Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年20
Page:
112-118
Research Field:
Publishing date:

Info

Title:
Metabonomic Analysis of Platycodon grandiflorus Leaves Under Drought Stress
Author(s):
SUN Xiaochun1LI Huirong2
(1.Co-construction Collaborative Innovation Center for Chineses Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources(Cultivation),Shaanxi University of Chinese Medicine,Xianyang,Shaanxi 712083;2.Yuxi Normal University,Yuxi,Yunnan 653100)
Keywords:
Platycodon grandiflorusdrought stressmetabolomedifferential metabolite
PACS:
-
DOI:
v10.11937/bfyy.20221130
Abstract:
The leaves of Platycodon grandiflorum were used as experimental materials,and polyethylene glycol (PEG) was used to simulate drought stress,widely-targeted metabolomics ultra-performance liquid chromatography-mass spectrometry(UPLC-MS/MS) was used to detected metabolites of drought stress group(P1) and control group(CK),to investigate the metabolic response of Platycodon grandiflorus to drought stress.Multivariate statistical analysis coupled with univariate statistical analysis were used,in order to provide reference for the breeding of drought-resistant Platycodon grandiflorus.The results showed that there were 632 metabolites and 78 differential metabolites after drought stress were detected,66 of which were up-regulated and 12 were down-regulated.Differential metabolites were mainly concentrated in amino acids and their derivatives,lipids,organic acids and their derivatives,nucleotides and their derivatives.KEGG enrichment analysis showed that the significantly pathways were aminoayl-tRNA biosynthesis,2-oxocarboxylic acid metabolism and biosynthesis of amino acids.The changes of metabolites in the Platycodon grandiflorus leaves under drought stress were elucidated.Amino acid and lipid related metabolites were the main products of Platycodon grandiflorus responsed to drought stress.

References:

[1]CHOI J H,JIN S W,CHOI C Y,et al.Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis[J].Biomedicine & Pharmacotherapy,2017,86:205-212.[2]孙晓春,黄文静,李铂.水杨酸对干旱胁迫下桔梗幼苗生理生化指标及相关基因表达的影响[J].中国农业科技导报,2022,24(1):63-70.[3]李敏,张萌,王士杰,等.短期干旱胁迫对桔梗生理生态及其皂苷含量的影响[J].中成药,2021,43(10):2910-2916.[4]赵璞,李梦,及增发,等.植物干旱响应生理对策研究进展[J].中国农学通报,2016,32(15):86-92.[5]WANG Y,LI X Y,LI C X,et al.The regulation of adaptation to cold and drought stresses in Poa crymophila Keng revealed by integrative transcriptomics and metabolomics analysis[J].Frontiers in Plant Science,2021(12):631117.[6]方彦,曾秀存,马骊,等.低温胁迫下冬油菜陇油7号根部代谢组学分析[J].干旱地区农业研究,2021,39(4):80-85,101.[7]牟丹,杨帆,卡着才让,等.高加索三叶草响应不同降温模式低温胁迫的代谢组学分析[J].草地学报,2021,29(9):1877-1884.[8]时羽杰,邬晓勇,唐媛,等.藜麦花期水分胁迫下的代谢组学分析[J].河南农业大学学报,2020,54(6):921-930.[9]李小冬,王小利,王茜,等.干旱胁迫下高羊茅叶片的代谢组学分析[J].中国草地学报,2016,38(5):59-65.[10]郭晋敏,杨升,陈秋夏,等.极端低温胁迫下秋茄LC-MS代谢组学分析[J/OL].分子植物育种,(2021-09-09)[2021-11-05].http://kns.cnki.net/kcms/detail/46.1068.S.20210909.1512.022.html.[11]孙立方,柯甫志,聂振朋,等.采用UPLC-MS/MS技术分析‘枸头橙’针刺和枝代谢物[J].果树学报,2020,37(7):962-970.[12]KISHOR P B K,SANGAM S,AMRUTHA R N,et al.Regulation of proline biosynthesis,degradation,uptake and transport in higher plants:Its implications in plant growth and abiotic stress tolerance[J].Current Science,2005,88(3):424-438.[13]武菲,付玉杰.葫芦巴碱在植物体内的生理功能[J].安徽农业科学,2012,40(10):5876-5878,5914.[14]刘晓东,孙广玉,李威.干旱对苜蓿叶片葫芦巴碱含量和渗透调节能力的影响[J].干旱地区农业研究,2009,27(4):121-124.[15]王蕊,孙广玉.干旱对大豆叶片葫芦巴碱含量和渗透调节的影响[J].中国沙漠,2010,30(3):552-555.[16]王玮玮,唐亮,周文龙,等.谷胱甘肽生物合成及代谢相关酶的研究进展[J].中国生物工程杂志,2014,34(7):89-95.[17]VIVANCOS P D,WOLFF T,MARKOVIC J,et al.A nuclear glutathione cycle within the cell cycle[J].Biochemical Journal,2010,431(2):169-178.[18]FOYER C H,NOCTOR G.Redox regulation in photosynthetic organisms:Signaling,acclimation,and practical implications[J].Antioxidants & Redox Signaling,2009,11(4):861-905.[19]GIGON A,MATOS A R,LAFFRAY D,et al.Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia)[J].Annals of Botany,2004(3):345-351.[20]熊欢欢,张含国,张磊,等.干旱胁迫下长白落叶松的代谢组学分析[J].东北林业大学学报,2019,47(4):1-7.[21]MURAKEZY  P,NAGY Z,DUHAZ C,et al.Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary[J].Journal of Plant Physiology,2003,160(4):395-401.[22]DJILIANOV D,IVANOV S,MOYANKOVA D,et al.Sugar ratios,glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii[J].Plant Biology,2011,13(5):767-776.[23]管仁伟,郭瑞齐,林慧彬,等.基于植物代谢组学技术的干旱及盐胁迫对黄芩中黄酮类成分影响的研究[J].中草药,2022,53(5):1504-1511.[24]王改利,魏忠,贺少轩,等.土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响[J].植物资源与环境学报,2011,20(3):1-8.[25]李丹丹,梁宗锁,普布卓玛,等.干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响[J].西北植物学报,2020,40(8):1380-1388.

Memo

Memo:
-
Last Update: 2022-12-22