|Table of Contents|

Comprehensive Evaluation of Introduction and Screening of New Cucumber Varieties Based on Principal Component Analysis

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年23
Page:
21-28
Research Field:
Publishing date:

Info

Title:
Comprehensive Evaluation of Introduction and Screening of New Cucumber Varieties Based on Principal Component Analysis
Author(s):
WANG Dandan1LI Yan1ZHANG Qingyin1QI Lianfen1LI Junhu2SHI Jianhua1
(1.Shijiazhuang Academy of Agricultural and Forestry Sciences,Shijiazhuang,Hebei 050041;2.The Science and Technology Innovation Service Center of Hebei Province,Shijiazhuang,Hebei 050000)
Keywords:
principal component analysiscucumberscreencomprehensive evaluation
PACS:
-
DOI:
10.11937/bfyy.20221059
Abstract:
Taking the new cucumber varieties from the Cucumber Research Institute of Tianjin Academy of Agricultural Sciences as the test material,the principal component analysis method was used to study the comprehensive analysis method of the main agronomic characters of cucumber,and the growth index,quality index,photosynthetic index,yield of cucumber.The effects of 21 indicators on 12 new cucumber varieties were selected,in order to screen out new cucumber varieties suitable for planting in Shijiazhuang area.The results showed that the largest coefficient of variation was the soluble sugar content,which was 59.70%,plant height,stem diameter,leaf area,fruit length,fruit diameter,soluble solids,intercellular CO2 concentration,and fluorescence maximum were all small,8.44%,7.38%,9.65%,7.80%,4.87%,9.90%,3.92%,and 3.36%,respectively,all less than 10%.Correlation analysis of these 21 agronomic traits showed that each trait was extremely significantly or significantly correlated with at least 1 other trait.The yield and the chlorophyll content were extremely significantly positively correlated,indicating that the yield mainly depends on photosynthesis.Through principal component analysis,6 principal components were obtained,which synthesized 83.825% of the original information,the function expressions and comprehensive evaluation criteria of the first 6 principal components was Y=0.296 32Y1+0.156 39Y2+0.147 52Y3+0.095 09Y4+0.080 46Y5+0.062 46Y6,the comprehensive score of the 12 cucumber varieties was obtained.Variety 10,that was ‘Jinyou 186’,had the highest score.Therefore,‘Jinyou 186’ was the most suitable variety for planting in Shijiazhuang area,and the result provided cucumber growers with a reference for the introduction of new varieties of Tianjin cucumber.

References:

[1]师建华,李燕,王丹丹,等.日光温室黄瓜冬春茬精量水肥栽培技术[J].中国瓜菜,2019,32(3):64-65.[2]郭曼霞,汤坤源.秋延黄瓜品种引进比较试验[J].上海蔬菜,2018(4):10-12.[3]高晶霞,杨冬艳,颜秀娟,等.日光温室早春茬黄瓜品种引进筛选试验[J].黑龙江农业科学,2016(4):57-59.[4]张凡.日光温室黄瓜连作土壤和基质微生物多样性与有机质组分关系研究[D].沈阳:沈阳农业大学,2017.[5]孙健.河北省黄瓜生产及全要素生产率研究[D].保定:河北农业大学,2019.[6]陈林,曹振强,梁肇均,等.黄瓜种质资源农艺性状多样性分析[J].广东农业科学,2021,48(6):15-22.[7]于娅,王娜,王飞,等.黄瓜种质资源农艺性状评价[J].东北农业科学,2020,45(5):75-81.[8]史建磊,陈先知,黄宗安,等.华南型黄瓜主要农艺性状遗传多样性评价[J].核农学报,2016,30(10):1914-1924.[9]师建华,齐连芬,王丹丹,等.不同防控措施对温室番茄品质、产量及发病率的影响[J].中国农业科技导报,2019,21(4):88-95.[10]王丹丹,师建华,李燕,等.基于主成分与聚类分析的辣椒主要农艺性状评价[J].中国瓜菜,2021,34(2):47-53.[11]张薇薇,张秀玲.基于主成分分析和聚类分析的苹果香气成分比较及品种分类研究[J].食品工业科技,2018,39(17):217-224.[12]黄小晶,牛锐敏,沈甜,等.基于主成分分析评价整形方式对不同成熟期‘梅鹿辄’葡萄品质的影响[J].北方园艺,2020(24):25-32.[13]荆瑞勇,卫佳琪,王丽艳,等.基于主成分分析的不同水稻品种品质综合评价[J].食品科学,2020,41(24):179-184.[14]严圭,李辉婕,华之梦,等.基于主成分分析的芝麻品质综合评价[J].江西农业大学学报,2020,42(6):1139-1150.[15]纪洪亭,王勇,曾燕楠,等.基于主成分分析评价不同类型肥料对向日葵穴盘苗素质的影响[J].中国农学通报,2020,36(29):100-106.[16]裴孝伯,李世诚,张福墁,等.温室黄瓜叶面积计算及其与株高的相关性研究[J].中国农学通报,2005,21(8):80-82.[17]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002.[18]牛海龙,刘红欣,李伟堂,等.灰色关联度分析法在花生品种综合评价上的应用[J].东北农业科学,2017,42(5):20-24.[19]荆绍凌,陈亚芹,张亚辉,等.吉林省主栽耐密玉米杂交种综合评价[J].吉林农业科学,2014,39(5):1-4,13.[20]仲义,鄂成林,孙发明,等.大豆农艺性状和品质性状间相关性分析[J].吉林农业科学,2012,37(2):1-3.[21]齐连芬,王丹丹,牛瑞生,等.基于主成分分析的温室番茄最佳有机肥与微生物菌剂配比[J].北方园艺,2019(1):7-13.[22]公丽艳,孟宪军,刘乃侨,等.基于主成分与聚类分析的苹果加工品质评价[J].农业工程学报,2014,30(13):276-285.[23]杨瑞环,刘殿林,哈玉洁,等.黄瓜早熟及丰产性与主要农艺性状的相关性分析[J].华北农学报,2005,20(5):34-37.

Memo

Memo:
-
Last Update: 2023-01-20