|Table of Contents|

Quantitative Inversion of Soil Total Phosphorus Content Based on Sentinel-2A Remote Sensing Data

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年15
Page:
74-80
Research Field:
Publishing date:

Info

Title:
Quantitative Inversion of Soil Total Phosphorus Content Based on Sentinel-2A Remote Sensing Data
Author(s):
MA Chi
(Department of Surveying and Mapping Engineering,Liaoning Provincial College of Communications,Shenyang,Liaoning 110122)
Keywords:
sentinel-2Aquantitative inversionremote sensingtotal phosphorus content
PACS:
-
DOI:
10.11937/bfyy.20220234
Abstract:
Taking Sentinel-2A remote sensing images as test materials,the total phosphorus content of bare soil in Fuyu city was studied by using decision tree classification,correlation analysis and stepwise regression analysis,in order to provide data support for the implementation of regional fine agriculture and provide reference for the study of Sentinel-2A remote sensing data in soil composition detection. The results showed that the decision tree analysis method could effectively separate the bare soil in the study area; the reflectance of Sentinel-2A remote sensing image had a good correlation with the total phosphorus content of bare soil in the study area after the first-order differential transformation of band quotient and band reflectance reciprocal,and the correlation coefficients reached -0.826 and 0.831 respectively; the inversion model of total phosphorus content of bare soil established by quotient of sentinel-2A band was Y=-613.5X(3/2)-545.0X(12/2) +3 679.1X(8A/7)+494.9X(11/8)-3 609.2,the determination coefficient of the model reached 0.780,and the root mean square error was 113.1 mg?kg-1,indicated that the method of retrieving total phosphorus content of bare soil in Fuyu City by using Sentinel-2A remote sensing data was feasible.

References:

[1]ALONGI D,TROTT L,WATTAYAKORN G,et al.Below-ground nitrogen cycling in relation to net canopy production in mangrove forests of southern Thailand[J].Marine Biology,2002,140(4):855-864.[2]王维奇,徐玲琳,曾从盛,等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J].生态学报,2011,31(23):7119-7124.[3]卢艳丽,白由路,王磊,等.黑土土壤中全氮含量的高光谱预测分析[J].农业工程学报,2010,26(1):256-261.[4]马驰.基于Sentinel-2A 遥感影像土壤有机质含量的反演研究[J].北方园艺,2020(2):94-100.[5]宋雪,张民,周洪印,等.基于土壤优化光谱参数估测太湖地区土壤全氮含量[J].农业资源与环境学报,2020,37(1):43-50.[6]顾晓鹤,王堃,潘瑜春,等.基于 HJ-1A HSI超光谱影像的耕地有机质遥感定量反演[J].地理与地理信息科学,2011,27(6):69-73.[7]陈鹏飞,刘良云,王纪华,等.近红外光谱技术实时测定土壤中总氮及磷含量的初步研究[J].光谱学与光谱分析,2008,28(2):285-298.[8]王莉雯,卫亚星.湿地土壤全氮和全磷含量高光谱模型研究[J].生态学报,2016,36(6):5116-5125.[9]万余庆,谢涛,许石,等.土壤氮、磷、钾含量的高光谱遥感探测方法[J].中国煤炭地质,2018,30(1):19-23.[10]王磊,顾晓鹤,王宝山,等.基于HJ-1A超光谱影像的县域尺度耕地土壤速效磷含量遥感制图研究[J].土壤通报,2015,46(6):1314-1320.[11]栾海军,章欣欣,田庆久,等.Landsat 7-ETM+归一化差分植被指数影像真实性检验[J].遥感信息,2016,31(6):138-146.[12]杨江燕,吴田,潘肖燕,等.基于遥感生态指数的雄安新区生态质量评估[J].应用生态学报,2019,30(1):277-284.[13]马宇龙,林志垒.基于面向对象和CART决策树方法的遥感影像湿地变化检测研究:以龙祥岛地区为例[J].福建师范大学学报(自然科学版),2017,33(6):69-81.[14]徐良将,黄昌春,李云梅,等.基于高光谱遥感反射率的总氮总磷的反演[J].遥感技术与应用,2013,28(4):681-688.[15]栾福明,张小雷,熊黑钢,等.基于TM影像的荒漠-绿洲交错带土壤有机质含量反演模型[J].中国沙漠,2014,34(4):1080-1086.[16]蔡东全,吴泉源,曹学江,等.基于HJ1A-HSI的龙口污水灌溉区土壤重金属含量反演[J].安全与环境工程,2015,22(5):33-39.

Memo

Memo:
-
Last Update: 2022-09-09