[1]BOUCHE N,LACOMBE B,FROMM H.GABA signaling:A conserved and ubiquitous mechanism[J].Trends in Cell Biology,2003(13):607-610.[2]PODLESAKOVA K,UGENA L,SPCHAL L,et al.Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J].New Biotechnology,2019,48:53-65.[3]ZAREI A,TROBACHER C P,COOKE A R,et al.Apple fruit copper amine oxidase isoforms:Peroxisomal MdAO1 prefers diamines as substrates,whereas extracellular MdAO2 exclusively utilizes monoamines[J].Plant Cell Physiology,2015,56:137-147.[4]OH S J,KIM H S,LIM S T.Increase of gamma-aminobutyric acid contents in rice embryo with protein hydrolysates and pyridoxal-5-phosphate using abiotic stress[J].Journal of Cereal Science,2019,89:102803.[5]CHE-OTHMAN M H,JACOBY R P,MILLAR A H,et al.Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress[J].New Phytologist,2020,225:1047-1048.[6]MEKONNEN D W,FLGGE U I,LUDEWIG F.Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana[J].Plant Science,2016,245:25-34.[7]NAYYAR H,KAUR R,KAUR S,et al.γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J].Journal of Plant Growth Regulation,2014(33):408-419.[8]VIJAYAKUMARI K,PUTHUR J T.γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn.plants subjected to PEG-induced stress[J].Plant Growth Regulation,2016,78:57-67.[9]WANG Y C,GU W R,MENG Y,et al.γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants[J].Scientific Reports,2017(7):43609.[10]SHETEIWY M S,SHAO H,QI W,et al.GABA-alleviated oxidative injury induced by salinity,osmotic stress and their combination by regulating cellular and molecular signals in rice[J].International Journal of Molecular Sciences,2019(20):5709.[11]牟洪香,侯新村.文冠果的研究进展[J].安徽农业科学,2007,35(3):703-705.[12]刘明君.文冠果育苗及栽培管理技术[J].现代园艺,2012(12):27-28.[13]邢军武.盐碱环境与盐碱农业[J].地球科学进展,2001(14):257-266.[14]张晓燕.神东矿区不同种源地文冠果生长适宜性及耐盐性研究[D].呼和浩特:内蒙古农业大学,2012.[15]李福鑫,李旭,金香花,等.NaCl胁迫对文冠果扦插幼苗光合特性的影响[J].延边大学农学学报,2015,40(6):143-144.[16]李永德,李旭,金香花,等.NaCl胁迫对文冠果幼苗生长和生理生化特征的影响[J].延边大学农学学报,2015,37(3):213-216.[17]张自阳,候轩轩,陈培,等.MST种子活力剂对小麦种子活力及幼苗生长的影响[J].河南科技学院学报(自然科学版),2014(2):1-5.[18]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.[19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.[20]LYU Y G,ZHANG H,MENG X Y,et al.A validated HPLC method for the determination of GABA by pre-column derivatization with 2,4-dinitrofluorodinitrobenzene and its application to plant GAD activity study[J].Analytical Letters,2010,43:2663-2671.[21]付长方,张海艳.盐胁迫对玉米种子萌发、幼苗叶绿素含量和渗透势的影响[J].山东农业科学,2015,47(5):27-30.[22]张翯,顾万荣,王泳超,等.DCPTA对盐胁迫下玉米苗期根系生长、渗透调节及膜透性的影响[J].生态学杂志,2015,34(9):2474-2481.[23]王泳超,郑博元,顾万荣,等.γ-氨基丁酸对盐胁迫下玉米幼苗根系氧化损伤及内源激素的调控[J].农药学学报,2018,20(5):607-617.[24]罗黄颖,高洪波,夏庆平,等.γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J].中国农业科学,2011,44(4):753-761.[25]DEEWATTHANAWONG R,NOCK J F,WATKINS C B.γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 storage[J].Postharvest Biology Technology,2010,57:92-96.[26]SHANG H,CAO S,YANG Z,et al.Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage[J].Journal of Agricultural and Food Chemistry,2011,59:1264-1268.[27]刘明杰.拟南芥Na+、K+吸收与积累的研究[D].兰州:兰州大学,2014.[28]白丽萍,何雨,宋宇,等.茄子砧木Na+、K+含量、SK、Na运输与耐盐性关系研究[J].植物生理学报,2014,50(11):1645-1650.[29]FLOWERS T J,COLMER T D.Plant salt tolerance:Adaptations in halophytes[J].Annals of Botany,2015,115:327-331.[30]贾邱颖,吴晓蕾,冀胜鑫,等.γ-氨基丁酸对番茄嫁接苗耐盐性的生理调控效应[J].植物营养与肥料学报,2021(7):122-134.