|Table of Contents|

Classification and Recognition of Jujube Varieties Based on Stacking Model Fusion

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年08
Page:
139-148
Research Field:
Publishing date:

Info

Title:
Classification and Recognition of Jujube Varieties Based on Stacking Model Fusion
Author(s):
YU Youjiang1YU Caili2SHANG Yuanhang1HU Yanpei3WU Gang1
(1.College of Information Engineering,Tarim University,Alar,Xinjiang 843300;2.Shanwei Institute of Technology,Shanwei,Guangdong 516600;3.School of Information Engineering,Xinjiang Institute of Technology,Aksu,Xinjiang 843000)
Keywords:
model fusioncultivar classificationjujubeneural networkbase learner
PACS:
-
DOI:
10.11937/bfyy.20214005
Abstract:
There are many varieties of jujube in Xinjiang,so it is necessary to distinguish different varieties before processing.Aiming at the problems of low efficiency and high cost of manual classification and difficult to ensure the comprehensive quality of mechanical classification,a classification and identification method of jujube varieties based on Stacking model fusion was proposed.11 280 jujube images of 5 categories were collected and preprocessed to establish a data set.A model that three different convolution neural network (VGG 16,ResNet 50,DenseNet 121) as base learner and logistic regression as secondary learner were constructed.The comparative experiments were carried out between the integrated model and single neural network model,as well as the integrated model with different combinations of base learners.The results showed that the accuracy of the proposed Stacking model was 92.38%,which was improved by 4.60 percentage points compared with that of the best single model (88.30%).This method can effectively improve the identification accuracy of jujube varieties and provide reference for Xinjiang jujube from manual sorting to automatic machine identification.

References:

[1]任继海.枣树管理与红枣贮藏加工[M].北京:中国科学技术出版社,1998.[2]钟小华,曹玉华,张永清,等.基于机器视觉技术的红枣全表面信息无损分拣系统研究与实现[J].食品与机械,2017,33(5):114-118.[3]YU W,DONG F W,HUI F W,et al.A microfluidic robot for rare cell sorting based on machine vision identification and multi-step sorting strategy[J].Talanta,2021,226:122-136.[4]MON T,ZARAUNG N.Vision based volume estimation method for automatic mango grading system[J].Biosystems Engineering,2020,198(10):338-349.[5]EREZ A P,EREZ C P,JUAN V,et al.Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system[J].Biosystems Engineering,2017,159:46-58.[6]TRAFFANO S M V,CASTRO G M,COLOM R J,et al.New Spectrophotometric system to segregate tissues in aandarin fruit[J].Food and Bioprocess Technology,2018,11(2):399-406.[7]HUANG M,HE C,ZHU Q,et al.Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging[J].Applied Sciences,2016,6(6):183.[8]HUANG K Y,CHIEN M.A novel method of identifying paddy seed varieties[J].Multidisciplinary Digital Publishing Institute,2017,17(4):809.[9]王红军,熊俊涛,黎邹邹,等.基于机器视觉图像特征参数的马铃薯质量和形状分级方法[J].农业工程学报,2016,32(8):272-277.[10]刘广强,于欣,舒振宇,等.基于稀疏表示的枸杞分类研究[J].中国农机化学报,2016,37(3):250-254.[11]吴尚智,周运,王欢欢,等.利用粗糙集和双隐层BP神经网络的小麦籽粒品种分类[J].沈阳农业大学学报,2020,51(5):576-585.[12]苏军,饶元,张敬尧,等.基于GA优化SVM的干制红枣品种分类方法[J].洛阳理工学院学报(自然科学版),2018,28(4):65-69.[13]PANGAL D J,KUGENER G,SHAHRESTANI S,et al.A guide to annotation of neurosurgical intraoperative video for machine learning analysis and computer vision[J].World Neurosurgery,2021,150:26-30.[14]黄盛,李菲菲,陈虬.基于改进深度残差网络的计算断层扫描图像分类算法[J].光学学报,2020,40(3):56-64.[15]储岳中,汪佳庆,张学锋,等.基于改进深度残差网络的图像分类算法[J].电子科技大学学报,2021,50(2):243-248.[16]陈洋.基于卷积神经网络的农作物病虫害图像分类研究[D].南昌:江西农业大学,2019.[17]张笑铭,王志君,梁利平.一种适用于卷积神经网络的Stacking算法[J].计算机工程,2018,44(4):243-247.[18]LI L,WANG Y.Improved LeNet-5 convolutional neural network traffic sign recognition[J].International Core Journal of Engineering,2021,7(4):114-121.[19]CHEN L,HAO C,NING X,et al.A review for cervical histopathology image analysis using machine vision approaches[J].Artificial Intelligence Review,2020,53(2):4821-4862.[20]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2014,1409:1097-1105.[21]NAR A,YLDRM M,EROLU Y.Classification of pneumonia cell images using improved ResNet 50 model[J].Traitement du Signal,2021,38(1):165-173.[22]WU J,YANG H.Linear regression-based efficient SVM learning for large-scale classification[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(10):2357-2369.[23]MIRANDA J S,PICHARDO L O.Lecture notes of computer science[M].Berlin:Springer Verlag,2017.[24]ANBARASAN K.AI innovation in medical imaging diagnostics[M].Hershey:IGI Global,2020.[25]YU D,YANG J,ZHANG Y,et al.Additive densenet:Dense connections based on simple addition operations[J].Journal of Intelligent & Fuzzy Systems,2020,40(5):1-11.[26]WOLPERT D H.Stacked generalization[J].Neural Networks,1992,5(2):241-259.[27]CHANG X,WU J,LIU H,et al.Travel mode choice:A data fusion model using machine learning methods and evidence from travel diary survey data[J].Transportmetrica,2019,15(2):1587-1612.[28]袁培森,杨承林,宋玉红,等.基于Stacking集成学习的水稻表型组学实体分类研究[J].农业机械学报,2019,50(11):144-152.[29]数据分析与知识发现.Facebook宣布正式推出PyTorch 1.0稳定版[J].数据分析与知识发现,2018,2(12):88.[30]尚远航,余游江,吴刚.基于混合注意力机制的植物病害识别[J].塔里木大学学报,2021,33(2):94-103.[31]JANI V,OSTOVANEH M R,CHAMERA E,et al.Automatic segmentation of left ventricular myocardium and scar from lge-cmr images utilizing deep learning with weighted categorical cross entropy loss function weight initialization[J].Circulation,2019,140:1347-1353.

Memo

Memo:
-
Last Update: 2022-07-13