|Table of Contents|

Research Progress on Transcriptome of Edible Fungi Under Adversity Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年06
Page:
131-136
Research Field:
Publishing date:

Info

Title:
Research Progress on Transcriptome of Edible Fungi Under Adversity Stress
Author(s):
CAO ZijianHU BaoXU ZixinZHENG SuyueWANG Chunxia
(School of Landscape and Ecological Engineering,Hebei University of Engineering,Handan,Hebei 056038)
Keywords:
transcriptomeedible fungiadversity stressresponse mechanism
PACS:
-
DOI:
10.11937/bfyy.20213872
Abstract:
Edible fungi,collectively known as mushrooms,are large fungi that can be eaten by fruiting bodies.It is an important characteristic cash crop,rich in protein,polysaccharides,vitamins,dietary fiber and other nutrients,and has high edible and medicinal value.Stress is an important factor affecting the growth,yield and quality of edible fungi.Therefore the molecular mechanism of edible fungi responding to stress has received more and more attention.Transcriptome,as an important part of functional genomics,contributes to study gene transcription and regulation in cells at the overall level.Using this technology to study the gene expression of edible fungi under stress is conducive to clarifying the molecular response mechanism of edible fungi under stress.In this study,progress in the application of transcriptome technology to study the response of edible fungi to biological and abiotic stresses (temperature,light,heavy metals,saline,etc.),in order to provide reference for the study of molecular mechanism of stress resistance of edible fungi.

References:

[1]顾可飞,周昌艳,李晓贝.食用菌的营养价值及药用价值[J].食品工业,2017,38(10):228-231.[2]何凌仙子,贾志清,刘涛,等.植物适应逆境胁迫研究进展[J].世界林业研究,2018,31(2):13-18.[3]李云霞,程晓霞,代小梅,等.植物在逆境胁迫中的细胞程序性死亡[J].生物技术通报,2009(4):7-11.[4]边银丙.食用菌菌丝体侵染性病害与竞争性病害研究进展[J].食用菌学报,2013,20(2):1-7.[5]常婷婷,赵妍,杨焕玲,等.食药用菌高温胁迫应答研究进展[J].食用菌学报,2021,28(1):124-134.[6]王海燕,孙国琴,庞杰,等.环境胁迫对食用菌生长发育影响的研究进展[J].食药用菌,2017,25(2):110-112.[7]崔凯,吴伟伟,刁其玉.转录组测序技术的研究和应用进展[J].生物技术通报,2019,35(7):1-9.[8]于海龙,郭倩,杨娟,等.环境因子对食用菌生长发育影响的研究进展[J].上海农业学报,2009,25(3):100-104.[9]林爱钦.探讨食用菌栽培的温度要求[J].科技创新导报,2010 (23):231.[10]吕贝贝,吴潇,莫芹,等.草菇低温胁迫初期应答关键通路的探究[J].菌物学报,2021,40(5):1-13.[11]解凡,赵丽丽,叶丽云,等.肺形侧耳低温胁迫时期的转录组分析[J].菌物学报,2018,37(12):1598-1607.[12]解凡,宋燕娇,程冰,等.低温胁迫诱导肺形侧耳合成麦角甾醇的通路分析[J].菌物学报,2019,38(12):2221-2231.[13]唐贤,丁祥,董明明,等.棒瑚菌子实体不同发育时期的转录组分析[J].生物技术通报,2019,35(10):119-129.[14]FU Y P,LIANG Y,DAI Y T,et al.De novo sequencing and transcriptome analysis of Pleurotus eryngii subsp.tuoliensis (bailinggu) mycelia in response to cold stimulation[J].Molecules (Basel,Switzerland),2016,21(5):1-16.[15]HUA S,ZHANG B,FU Y,et al.Enzymatic gene expression by Pleurotus tuoliensis (Bailinggu):Differential regulation under low temperature induction conditions[J].World Journal of Microbiology and Biotechnology,2018,34(11):1-11.[16]陈小敏,吴海冰,向泉桔,等.不同温度培养对香菇漆酶活性及转录表达的影响[J].四川大学学报(自然科学版),2019,56(1):155-160.[17]余颖豪,伍土恒,叶志伟,等.基于转录组分析的金针菇冷诱导原基形成的调控网络[J].菌物学报,2020,39(6):1065-1076.[18]YU H L,LI Q Z,SHEN X,et al.Transcriptomic analysis of two Lentinula edodes genotypes with different cadmium accumulation ability[J].Frontiers in Microbiology,2020(11):558104.[19]ZHANG X,REN A,LI M J,et al.Heat stress modulates mycelium growth,heat shock protein expression,ganoderic acid biosynthesis,and hyphal branching of Ganoderma lucidum via cytosolic Ca2+[J].Applied and Environmental Microbiology,2016,82(14):4112-4125.[20]辛苗苗,赵妍,黄金丽,等.香菇疏水蛋白hyd1基因高温胁迫下表达与生物信息学分析[J].分子植物育种,2016,14(10):2645-2652.[21]杨焕玲,仝宗军,赵妍,等.香菇锰过氧化物酶基因(LeMnP1)生物信息学分析及高温胁迫下的表达[J].菌物学报,2020,39(6):1056-1064.[22]GANCEDO C,FLORES C L.The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi[J].FEMS Yeast Research,2004,4(4):351-359.[23]刘秀明,黄晨阳,陈强.肺形侧耳高温后恢复期间海藻糖代谢途径研究[J].中国园艺文摘,2016,32(1):230-231.[24]闫苗,陈利丁,艾柳英,等.刺芹侧耳两种保护酶基因的克隆、分析及温度对其表达量的影响[J].菌物学报,2018,37(12):1671-1679.[25]WANG F,LIU Q,ZHANG J,et al.Comparative transcriptome analysis between a spontaneous albino mutant and its sibling strain of cordyceps militaris in response to light stress[J].Frontiers in Microbiology,2018(9):1237.[26]唐利华,鲍大鹏,万佳宁,等.光诱导香菇菌丝转色阶段的转录因子表达分析[J].菌物学报,2016,35(9):1106-1116.[27]肖冬来,张迪,马璐,等.光照胁迫下广叶绣球菌菌丝基因差异表达的初步分析[J].中国食用菌,2017,36(5):60-63.[28]KIM J Y,KIM D Y,PARK Y J,et al.Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light[J].PLoS One,2020,15(3):18.[29]HUANG X Y,ZHANG R J,QIU Y J,et al.RNA-seq profiling showed divergent carbohydrate-active enzymes (CAZymes) expression patterns in Lentinula edodes at brown film formation stage under blue light induction[J].Frontiers in Microbiology,2020(11):10.[30]XU H,SONG P,GU W,et al.Effects of heavy metals on production of thiol compounds and antioxidant enzymes in Agaricus bisporus[J].Ecotoxicology and Environmental Safety,2011,74(6):1685-1692.[31]罗园园,吴雪楠,刘文娟,等.镉累积效应对土壤微生物活性的影响[J].化学与生物工程,2016,33(7):23-27.[32]刘俊敏.镉胁迫对双孢蘑菇抗氧化系统的影响及耐受性相关基因的筛选与鉴定[D].厦门:厦门大学,2018.[33]PETTIT R K.Small-molecule elicitation of microbial secondary metabolites[J].Microbial Biotechnology,2011,4(4):471-478.[34]LIU P H,HUANG Z X,LUO X H,et al.Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance[J].PLoS One,2020,15(9):e0239617.[35]WANG L,LI H,WEI H,et al.Identification of cadmium-induced Agaricus blazei genes through suppression subtractive hybridization[J].Food and Chemical Toxicology,2014,63:84-90.[36]罗海凌.莱牧一号对干旱胁迫的生理反应及生物利用研究[D].福州:福建农林大学,2015.[37]李济之.CO2浓度对蛹虫草生长发育及品质的影响[D].沈阳:沈阳农业大学,2018.[38]李红,张敏,李超,等.羊肚菌液体培养工艺研究[J].沈阳农业大学学报,2018,49(2):227-233.[39]KFIR S,EMILIA L,TANELI H I,et al.Sensing,physiological effects and molecular response to elevated CO2 levels in eukaryotes[J].Journal of Cellular and Molecular Medicine,2009,13:4304-4318.[40]HALL R A,DE SORDI L,MACCALLUM D M,et al.CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans[J].PLoS Pathog,2010,6(11):e1001193.[41]RONNY M,SUSANN P,A M F,et al.CO2 sensing in fungi:At the heart of metabolic signaling[J].Current Genetics,2017,63(6):965-972.[42]YAN J J,TONG Z J,L Y Y,et al.Comparative transcriptomics of flammulina filiformis suggests a high CO2 concentration inhibits early pileus expansion by decreasing cell division control pathways[J].International Journal of Molecular Sciences,2019,20(23):5923.[43]REZAL,KUMAR B,KUMAR V,et al.Evaluation on different media,pH and temperature levels on mycelial growth of oyster mushroom (Pleurotus florida)[J].Plant Cell Biotechnology and Molecular Biology,2019,20(5/6):254-260.[44]杨威.pH对褐环粘盖牛肝菌转录组的影响[D].呼和浩特:内蒙古农业大学,2018.[45]段应策.香菇草酸代谢响应环境pH的研究[D].北京:中国农业科学院,2020.[46]刘国丽,李红,龚娜,等.基于形态特征和多基因联合序列鉴定卵孢长根菇蛛网病病原菌[J].食用菌学报,2020,27(3):30-36.[47]吴希禹,付永平,李玉.香菇蛛网病病原菌树状枝葡霉生物学特性[J].菌物学报,2019,38(5):646-657.[48]GEA F J,NAVARRO M J,SANTOS M,et al.Screening and evaluation of essential oils from mediterranean aromatic plants against the mushroom cobweb disease,Cladobotryum mycophilum[J].Agronomy,2019,9(10):656.[49]BAILEY A M,COLLOPY P D,THOMAS D J,et al.Transcriptomic analysis of the interactions between Agaricus bisporus and Lecanicillium fungicola[J].Fungal Genetics and Biology,2013,55(6):67-76.[50]DANIEL E,JULIAN G,HELEN G,et al.Viral agents causing brown cap mushroom disease of Agaricus bisporus[J].Applied and Environmental Microbiology,2015,81(20):7125-7134.[51]WANG Q,GUO M,XU R,et al.Transcriptional changes on blight fruiting body of Flammulina velutipes caused by two new bacterial pathogens[J].Frontiers in Microbiology,2019(10):2845.[52]NORTH L H,WUEST P J.The infection process and symptom expression of verticillium disease of Agaricus bisporus[J].Canadian Journal of Plant Pathology,1993,15(2):74-80.[53]LARGETEAU M L,SAVOIE J-M.Microbially induced diseases of Agaricus bisporus:Biochemical mechanisms and impact on commercial mushroom production[J].Applied Microbiology and Biotechnology,2010,86(1):63-73.[54]赵慧.平菇黄斑病病原菌的分离鉴定、侵染机制与生物防治研究[D].太原:山西农业大学,2019.[55]徐岩岩.托拉斯假单胞杆菌侵染平菇传播途径及其弱毒菌株诱导抗病机理研究[D].北京:中国农业科学院,2013.[56]THOMAS J,SERGEANT M,COSTA A,et al.Molecular characterisation of the interaction between Agaricus bisporus and its mycopathogen Verticillium fungicola[J].Mushroom Sci,2007(17):123-130.[57]刘永明,张玲,邱涛,等.高通量转录组测序技术在植物雄性不育研究中的应用[J].遗传,2016,38(8):677-687.[58]武学霞,李兰平,刘玉皎.蚕豆耐旱机制研究进展[J].分子植物育种,https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=FZZW 2021042200B&uniplatform=NZKPT&v=_MB1PS_Ch2BPFP TJD5jKX1XLlER-dcazELL-odq_tPFvMMumekjRkN2iRTjeYCLk.(2021-04-23)[2021-06-20].[59]WANG W S,ZHAO X Q,LI M,et al.Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J].Journal of Experimental Botany,2016,67(1):405-419.[60]ZHANG A Q,HAN D M,WANG Y H,et al.Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis[J].Planta,2018,247(3):715-732.[61]KUMAR B K P,KANAKALA S,MALATHI V G,et al.Transcriptomic and proteomic analysis of yellow mosaic diseased soybean[J].Journal of Plant Biochemistry and Biotechnology,2017,26(2):224-234.

Memo

Memo:
-
Last Update: 2022-05-25