[1]王玉英,陈先琪,陈璐,等.PyHY5基因遗传转化矮牵牛的条件筛选与优化[J/OL].分子植物育种,https://kns.cnki.net/KXReader/Detail?invoice=WAiI2wNGy8vwg1Ip1B3gDyNa48 DuammsM%2B%2BZJ8jxrx0N0sm8IsrQ4xNN5dzUNCKnnITW cpCVZ8k6CuuclHtdRNkAeyI16cvk53TqsXy%2FlfWUWwSIAx5 MHS7snhbOBuT2o8FVocEmEtsyOEIHoFgDB8J9izrnJFYNuSez VsNdxAc%3D&DBCODE=CAPJ&FileName=FZZW20200917 000&TABLEName=capjlast&nonce=69421AF1047E486087 460E8709A4991A&uid=&TIMESTAMP=1638169047513.(2020-09-18)[2021-04-30].[2]JACKSON M B,COLMER T D.Response and adaptation by plants to flooding stress[J].Annals of Botany,2005,96(4):501-505.[3]尹冬梅.菊花近缘种属植物涝性评价及耐涝机理研究[D].南京:南京农业大学,2011.[4]刘文进.柽柳乙烯响应因子ThERF1基因应答高盐胁迫的调控机理[D].哈尔滨:东北林业大学,2013.[5]LICAUSI F,OHME-TAKAGI M,PERATA P.APETALA2/ethylene responsive factor (AP2/ERF) transcription factors:Mediators of stress responses and developmental programs.[J].New Phytol,2013,199(3):639-49.[6]XIE Z,NOLAN T M,JIANG H.AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J].Front Plant Sci,2019(10):228.[7]HAO L,SHI S,GUO H.Genome-wide identification and expression profiles of ERF subfamily transcription factors in Zea mays L.[J].PeerJ,2020(8):e9551.[8]WANG Y,ZHANG Y,ZHANG Q.Comparative transcriptome analysis of panicle development under heat stress in two rice (Oryza sativa L.) cultivars differing in heat tolerance[J].PeerJ,2019(7):e7595.[9]DONG L,CHENG Y,WU J.Overexpression of GmERF5,a new member of the soybean EAR motif-containing ERF transcription factor,enhances resistance to Phytophthora sojae in soybean[J].J Exp Bot,2015,66(9):2635-2647.[10]高春艳,吴芮,袁玉,等,任莉萍.植物AP2/ERF转录因子及其在非生物胁迫应答中的作用[J].江汉大学学报(自然科学版),2017,45(3):236-240.[11]HINZ M,WILSON I W,YANG J.Arabidopsis RAP2.2:An ethylene response transcription factor that is important for Hypoxia survival[J].Plant Physiol,2010,153(2):757-72.[12]SUN D,NANDETY R S,ZHANG Y.A petunia ethylene-responsive element binding factor,PhERF2,plays an important role in antiviral RNA silencing[J].J Exp Bot,2016,67(11):3353-3365.[13]朱进,赵莉莉.淹水胁迫对苦瓜幼苗生长、丙二醛含量和SOD活性的影响[J].湖北农业科学,2016,55(3):655-657.[14]张阳,李瑞莲,张德胜,等.涝渍对植物影响研究进展[J].作物研究,2011,25(4):420-424.[15]潘澜,薛立.植物淹水胁迫的生理学机制研究进展[J].生态学杂志,2012,31(10):2662-2672.[16]陈鹭真,林鹏,王文卿.红树植物淹水胁迫响应研究进展[J].生态学报,2006(2):586-593.[17]CLAUDIE R,LUIS O E,JEAN-BERNARD C,et al.Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula[J].Journal of Experimental Botany,2006,57(12):11.[18]WANG X K.The principle and technology of plant physiology and biochemistry experiment[M].Beijing:Higher Education Press,2006.[19]YANG J H,GAO Y,LI Y M,et al.Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon[J].Scinentia Horticultrae,2008,118:200-205.[20]ANGELIKA M,GERD A.Tolerance of crop plants to oxygen deficiency stress:Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J].Physiologia Plantarum,2003,117(4):508-520.[21]WATERS I,MORRELL S,GREENWAY H,et al.Effects of anoxia on wheat seedlings:Ⅱ.influence of O2 supply prior to anoxia on tolerance to anoxia,alcoholic fermentation,and sugar levels[J].Journal of Experimental Botany,1991,42(244):1437-1447.[22]MUSTROPH A,ALBRECHT G.Tolreance of crop plants to oxygen deficiency stress:Fermentative activity and photosynthetic capacity ofentire seedings under hypoxia and anoxia[J].Physiologia Plantarum,2003,177(4):508-520.[23]覃利萍.刚毛柽柳AP2/ERF转录因子ThCRF1响应盐胁迫的调控机理研究[D].乌鲁木齐:新疆大学,2018.[24]DEBBARMA J,SARKI Y N,SAIKIA B.Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR-Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants:A review[J].Mol Biotechnol,2019,61(2):153-172.[25]YAN J Z,XUE Z S,GUO Z Y.Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield[J].Field Crops Research,2015,179:164-172.[26]NISHIUCHI S,YAMAUCHI T,TAKAHASHI H.Mechanisms for coping with submergence and waterlogging in rice[J].Rice (NY),2012,5(1):2.[27]YU F,LIANG K,FANG T.A group VII ethylene response factor gene,ZmEREB180,coordinates waterlogging tolerance in maize seedlings[J].Plant Biotechnol J,2019,17(12):2286-2298.[28]夏红霞,朱启红.淹水对滴水观音抗氧化系统和丙二醛的影响[J].三峡生态环境监测,2016,1(3):40-44.[29]刘文革,阎志红,王川,等.西瓜幼苗抗氧化系统对淹水胁迫的响应[J].果树学报,2006(6):860-864.[30]李玲.甘蓝型油菜幼苗对渍水胁迫的生理响应研究[D].北京:中国农业科学院,2011.[31]彭秀,李彬,王轶浩,等.淹水胁迫对香根草生理生化特性的影响[J].四川林业科技,2010,31(2):64-67.[32]韩大勇,杨永兴,杨杨,等.湿地退化研究进展[J].生态学报,2012,32(4):289-303.[33]刘长远,李光达,万丽嫱,等.高温胁迫对不同熟期马铃薯品种幼苗部分生理指标的影响[J].云南农业大学学报(自然科学),2020,35(4):596-600.[34]全瑞兰,玉永雄.淹水对紫花苜蓿南北方品种抗氧化酶和无氧呼吸酶的影响[J].草业学报,2015,24(5):84-90.[35]朱启红,夏红霞.淹水胁迫对石菖蒲抗氧化酶系统的影响[J].水生态学杂志,2012,33(4):138-141.[36]赵可夫.植物对水涝胁迫的适应[J].生物学通报,2003(12):11-14.[37]蔡金峰,曹福亮,张往祥.淹水胁迫对乌桕幼苗生长及根系无氧呼吸酶活性的影响[J].中南林业科技大学学报,2013,33(9):5-10.[38]KAZUYOSHI N,ETSUKO I,TAKAO D,et al.Effect of putrescine pretreatment to roots on growth and lactate metabolism in the root of tomato (Lycopersicon esculentum Mill.) under Root-zone hypoxia[J].Journal of the Japanese Society for Horticultural Science,2004,73(4):337-339.[39]张艳婷,张建军,王建修,等.长期水淹对‘中山杉118’幼苗呼吸代谢的影响[J].植物生态学报,2016,40(6):585-593.