|Table of Contents|

Effects of Mushroom Residue Compound Substrate on Tomato Seedling Quality

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年24
Page:
38-44
Research Field:
Publishing date:

Info

Title:
Effects of Mushroom Residue Compound Substrate on Tomato Seedling Quality
Author(s):
CHEN Fei1LIANG Fangfang1LI Shengli2SHEN Aimin3
(1.Henan Vocational College of Agriculture,Zhongmu,Henan 451450;2.College of Horticulture,Henan Agricultural University,Zhengzhou,Henan 450002;3.Zhengzhou Vegetable Research Institute,Zhengzhou,Henan 450015)
Keywords:
mushroom residueparticle sizevermiculitephysical and chemical propertiesseedling
PACS:
-
DOI:
10.11937/bfyy.20211198
Abstract:
Taking tomato variety ‘Fen Guo Peng Guan’ as test material,3 mm,5 mm two different particle sizes of mushroom residue and vermiculite were mixed in different proportions,a total of 12 treatments with the ratio of peat vermiculite 2∶1 as the control,tomato seedling test were carried out in order to explore the suitable compound substrate of grain size mushroom residue for tomato factory seedling.The results showed that in the same particle size of mushroom residue,with the increased proportion of mixed vermiculite,the total porosity,aeration porosity,bulk density,pH,EC value of the treatment base material was negatively correlated with the vermiculite content.Water holding porosity were positively correlated with vermiculite content.The growth index of tomato seedlings under the same particle size substrate treatment,with the increasing of vermiculite content,first increased and then decreased.Among them,when the volume ratio of mushroom residue with a particle size of 5 mm to vermiculite was 3∶2,it was S8 treatment,which was the best seedling substrate formula for tomato cultivation.At 49 days,the growth indicators of the seedlings reached 8.896 g fresh weight,0.954 g dry weight,22.07 cm plant height,and 4.90 mm stem diameter.Followed by S2,S3,S7 treatments followed by other treatments.

References:

[1]沈云亭,张春光,侯献波.充分利用优势条件大力发展食用菌生产[J].河南农业,2011(3):17.[2]崔元玗,张升,孙晓军,等.棉花秸秆为蔬菜栽培基质的可行性研究[J].北方园艺,2012(19):37-38.[3]史红玉,陈修斌,杨彬.育苗基质配方对温室黄瓜幼苗生长的影响[J].甘肃农业科技,2020(8):43-46.[4]赵婧,仪泽会,毛丽萍,等.番茄穴盘育苗基质筛选试验[J].山西农业科学,2018(46):1878-1881.[5]原硕,田永强,曲梅,等.柠条与蘑菇渣堆肥复配基质改善黄瓜育苗效果研究[J].中国蔬菜,2012(18):154-159.[6]姚文英,彭翠兰,杨海俊,等.树叶复混基质理化特性研究[J].安徽农业科学,2021,49(1):210-213,217.[7]刘佳,郁继华,冯致,等.追肥对有机生态型无土栽培辣椒生长发育与产量的影响[J].甘肃农业大学学报,2011,46(3):28-34.[8]庄华才,高芳云,何建齐,等.迷你小冬瓜有机生态型无土栽培技术[J].广东农业科学,2009(2):94-95.[9]姚文英,彭翠兰,杨海俊,等.不同有机肥用量树叶复混基质对西葫芦的育苗效果[J].新疆农业科学,2021,58(2):247-253.[10]崔烨,张泰劼,田兴山,等.水葫芦育苗基质及其重金属含量分析[J].广东农业科学,2019,46(6):79-85.[11]刘新红,宋修超,罗佳,等.以中药渣有机肥为主要材料的番茄育苗基质筛选[J].江苏农业科学,2020,48(22):149-153.[12]王珧,王博伟,陈艳丽,等.不同混配基质对棱丝瓜幼苗生长的影响[J].中国瓜菜,2019,32(12):45-48.[13]赵建设,李自娟,黄文,等.河南省番茄栽培现状及潜力品种推介[J].长江蔬菜,2015(17):15-18.[14]陈菲,李胜利,孙治强.不同粒径有机基质对黄瓜育苗效果的研究[J].北方园艺,2015(8):42-45.[15]武亚敬,毕君,李秋燕,等.松树皮基质不同粒径配比对油松苗生长影响[J].中南林业科技大学学报,2016,36(2):71-74.[16]李炎艳,武占会,刘明池,等.珍珠岩粒径对封闭式无机基质槽培番茄生长的影响[J].北方园艺,2019(23):12-19.[17]黄贵敏,林多,杨延杰.不同粒径木屑菇渣对辣椒育苗效果的影响[J].北方园艺,2018(16):29-35.[18]杨红丽,王子崇,张慎璞,等.农业有机废弃物发酵基质番茄育苗的试验研究[J].中国农学通报,2009,25(18):304-307.[19]连兆煌,李式军.无土栽培原理与技术[M].北京:中国农业出版社,1994.[20]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.[21]赵世杰,刘华山,董新纯.植物生理学试验指导[M].北京:中国农业科学技术出版社,1998.[22]李斗争,张志国.颗粒粒径对育苗基质孔隙特性的影响研究[J].北方园艺,2006(2):1-3.[23]王新右.蔬菜栽培与基质理化性状的关系探讨[J].现代农业科技,2018(13):76-77.[24]焦永刚,石琳琪,董灵迪,等.蔬菜无土栽培基质初步筛选研究[J].河北农业科学,2010,14(9):26-28.[25]王嘉佳,唐中华.可溶性糖对植物生长发育调控作用的研究进展[J].植物学研究,2014(3):71-76.[26]邓丽莉,潘晓倩,生吉萍,等.考马斯亮蓝法测定苹果组织微量可溶性蛋白含量的条件优化[J].食品科学,2012,33(24):185-189.[27]孙晓红,韩梅琳,王秀玲.菌糠复合基质在西甜瓜育苗上的应用试验[J].北京农业,2014(12):34-35.[28]陈贻钊,谢宇,赵依杰,等.海鲜菇菇渣复合红泥土基质对西瓜育苗的影响[J].热带作物学报,2017,38(6):1016-1021.

Memo

Memo:
-
Last Update: 2022-03-19