|Table of Contents|

Research Status of Resource Utilization of Coal Gangue Cultivation Matrix in Agriculture

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年23
Page:
134-141
Research Field:
Publishing date:

Info

Title:
Research Status of Resource Utilization of Coal Gangue Cultivation Matrix in Agriculture
Author(s):
WU Haixia12GUO Aike1TAO Tao3JI Yazhen4WANG Lishu12
(1.Engineering School of Water Conservancy and Hydroelectric Power,Hebei Engineering University,Handan,Hebei 056038;2.Hebei Key Laboratory of Intelligent Water Conservancy,Handan,Hebei 056038;3.Zhanghe Upstream Authority Administration Bureau,Haihe River Water Conservancy Commission,Handan,Hebei 056083;4.Shanxi Water Conservancy and Hydroelectric Power Research Institute,Taiyuan,Shanxi 030002)
Keywords:
coal ganguesubstrateheavy metalselenium
PACS:
-
DOI:
10.11937/bfyy.20210991
Abstract:
With the development and application of coal gangue in agriculture,the development and application of coal gangue as a cultural substrate had become an important research field.Based on the analysis of the research results at home and abroad,this study summarized the physical and chemical characteristics,biological characteristics,utilization ways,main achievements and existing problems of coal gangue,and points out the development trend of coal gangue in the future in agricultural resource utilization.

References:

[1]HARGREAVES J C,ADL M S,WARMAN P R.A review of the use of composted municipal solid waste in agriculture[J].Agriculture Ecosystems and Environment,2008,123(3):1-14.[2]VIMAL S R,SINGH J S,ARORA N K,et al.Soil-plant-microbe interactions in stressed agriculture management:A review[J].Pedosphere,2017,27(2):177-192.[3]AMOAH-ANTWI C,KWITAKOWSKA-MALINE J,THORNTON S F,et al.Restoration of soil quality using biochar and brown coal waste:A review[J].Science of the Total Environment,2020,722(1):11-18.[4]BARRETT G E,ALEXANDER P D,ROBINSON J S,et al.Achieving environmentally sustainable growing media for soilless plant cultivation systems:A review[J].Science of the Total Environment,2016,212(5):220-234.[5]SAVVAS G,GRUDA N.Application of soilless culture technologies in the modern greenhouse industry:A review[J].European Journal of Horticultural Science,2018,83(5):280-293.[6]YU L J,FENG Y L,YAN W.The current situation of comprehensive utilization of coal gangue in China[J].Advanced Materials Research,2012,524-527:915-918.[7]郭彦霞,张圆圆,程芳琴,等.煤矸石综合利用的产业化及其展望[J].化工学报,2014,65(7):2443-2453. [8]张长森.煤矸石资源化综合利用新技术[M].北京:化学工业出版社,2008.[9]陈俊涛,李吉忠,田成民.煤矸石的综合利用[J].矿物岩石地球化学通报,1997,16(S1):130-131.[10]王斌,张东健,谷林,等.煤矸石综合利用的研究概述[J].煤炭加工与综合利用,2013(3):77-80.[11]钱兆淦.煤矸石肥料在苹果上施用效果的研究[J].陕西农业科学,1997(1):14-15.[12]罗根华,饶猛刚,王帅,等.煤矸石-土壤混合基质对小白菜生长的影响及Pb迁移规律[J].地球与环境,2015,43(1):14-20.[13]王丽华,关禹,王道涵,等.煤矸石与不同基质比例对小白菜生长的影响[J].地球环境学报,2014,5(4):266-270.[14]邵玉飞,马建,陈欣.利用煤矸石制作水稻育苗基质的研究[J].农业资源与环境学报,2017,34(6):555-561.[15]李闯.玉米秸秆发酵基质混合配比对盆栽牡丹理化性状的影响[D].郑州:河南农业大学,2011.[16]官会林,刘士清,张无敌,等.紫云英轮作与退化山地红壤肥力恢复研究[J].农业现代化研究,2007(4):494-497.[17]胡青青,李恋卿,潘根兴.生物质炭醋糟复配物代替草炭对辣椒幼苗生长的影响[J].土壤,2017,49(2):273-282.[18]马芳,秦俊梅,白中科.不同风化程度对煤矸石盐分与pH的影响[J].山西农业大学学报(自然科学版),2007(1):55-57,70.[19]李燕荣,周国英,胡清秀,等.几种双孢蘑菇菌株对稻草降解能力的研究[J].北方园艺,2010(10):207-210.[20]何俊瑜,任艳芳,李亚灵,等.利用煤矸石基质进行小白菜无土栽培研究[J].北方园艺,2008(12):35-37.[21]何俊瑜,任艳芳,李亚灵,等.煤矸石作无土栽培基质的可行性研究[J].环境科学与技术,2010,33(11):163-166.[22]何俊瑜,任艳芳,温祥珍,等.煤矸石为基质的育苗试验[J].山西农业大学学报(自然科学版),2004(1):56-60.[23]童贯和,陈锦云,刘天骄,等.腐熟油菜秸秆、煤矸石组合的栽培基质重金属污染及蔬菜安全评价[J].中国生态农业学报,2011,19(3):661-667.[24]童贯和,刘天骄,张科贵,等.新型无土栽培基质配比对4种叶菜类蔬菜生长发育和产量的影响:以煤矸石、油菜秸秆等组成的栽培基质为例[J].农业现代化研究,2012,33(6):762-765.[25]童贯和,王顺昌,刘天骄,等.煤矸石等组成的无土栽培基质重金属污染及蔬菜安全评价[J].农业环境科学学报,2010,29(11):2064-2070.[26]唐升引,蒋永吉,陈静,等.煤矸石主要物理特性及在栽培基质中应用的可行性分析[J].干旱地区农业研究,2014,32(3):209-213.[27]董颖,李娜,耿玉清,等.添加保水剂对煤矸石基质保水性能的影响[J].中国水土保持科学,2020,18(3):114-124.[28]李娜,耿玉清,赵新宇,等.生物炭和PAM混施影响煤矸石基质水分的入渗和蒸发[J].水土保持学报,2020,34(2):290-296.[29]张超英,陈艳鑫,耿玉清,等.生物炭和保水剂对煤矸石基质水分物理特征的影响[J].干旱区资源与环境,2020,34(9):122-129.[30]王健,马保国,尹慧兰,等.峰峰新三矿煤矸石山土壤水分特性研究[J].科学技术与工程,2015,15(4):17-22.[31]马保国,王健,刘婧然,等.煤矸石基质土壤的水分入渗试验研究[J].煤炭学报,2014,39(12):2501-2506.[32]WANG C,SHAO Z J,QIU L,et al.The solid-state physicochemical properties and biogas production of the anaerobic digestion of corn straw pretreated by microwave irradiation[J].RSC Advances,2021,11(6):3575-3584.[33]杜韬,王冬梅,张泽洲,等.煤矸石植生基质保水性能对黑麦草生长的影响[J].中国水土保持科学,2019,17(4):75-84.[34]徐良骥,黄璨,李青青,等.煤矸石粒径结构对充填复垦重构土壤理化性质及农作物生理生态性质的影响[J].生态环境学报,2016,25(1):141-148.[35]DU T,WANG D M,BAI Y J,et al.Optimizing the formulation of coal gangue planting substrate using wastes:The sustainability of coal mine ecological restoration[J].Ecological Engineering,2020,143(15):1-10.[36]范如芹,严少华,罗佳,等.农作物秸秆基质化利用技术进展[J].生态与农村环境学报,2016,32(3):410-416.[37]王建湘,周杰良.农作物秸秆在有机生态型无土栽培中的应用研究[J].生态与农村环境学报,2016,32(3):410-416.[38]廖四海,杜勇立,刘振华,等.煤矸石堆放地周围土壤中重金属的污染特性及评价[J].环境工程,2014,32(8):118-120,126.[39]张锂,韩国才,陈慧,等.黄土高原煤矿区煤矸石中重金属对土壤污染的研究[J].煤炭学报,2008(10):1141-1146.[40]丛鑫,雷旭涛,付玲,等.海州煤矿矸石山周边土壤重金属污染特征及生态风险评价[J].地球与环境,2017,45(3):329-335.[41]时亚坤,李凯荣,闫宝环.铜川三里洞煤矿煤矸石风化土壤重金属分布及污染状况分析[J].水土保持研究,2012,19(1):187-191.[42]黄璨.基于不同煤矸石基质的充填复垦地土壤理化性质及其农作物效应研究[D].淮南:安徽理工大学,2015.[43]TANG Q,LI L Y,ZHANG S,et al.Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J].Journal of Geochemical Exploration,2018,186:1-11.[44]徐良骥,黄璨,章如芹,等.煤矸石充填复垦地理化特性与重金属分布特征[J].农业工程学报,2014,30(5):211-219.[45]黄璨.基于不同煤矸石基质的充填复垦地土壤理化性质及其农作物效应研究[D].淮南:安徽理工大学,2015.[46]郑国璋.农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出版社,2007.[47]安志装.农田重金属污染危害与修复技术[M].北京:中国农业出版社,2018.[48]张汝翀,王冬梅,张英,等.煤矸石绿化基质对白三叶草生长及其抵御重金属污染的影响[J].应用于生态环境学报,2018,24(4):908-914.[49]李志涛,范迎春.重金属污染对土壤:作物系统的影响研究[J].水科学与工程技术,2011(5):15-18.[50]WANG X M,ZHOU C C,LIU G J,et al.Transfer of metals from soil to crops in an area near a coal gangue pile in the Guqiao Coal Mine,China[J].Analytical Letters,2013,46(12):1962-1977.[51]吴启堂.一个定量植物吸收土壤重金属的原理模型[J].土壤学报,1994(1):68-76.[52]王俊,符晓.植物根系对重金属在土壤中运移影响的数值模拟研究[J].水资源与水工程学报,2011,22(1):26-30.[53]李红霞,林文波,李玉庆,等.植物修复重金属污染沉积物的模型仿真及验证[J].环境科学,2011,32(7):2119-2124.[54]BRUNETTI G,KODESOVA R,SIMUNEK J.Modeling the translocation and transformation of chemicals in the soil-plant continuum:A dynamic plant uptake module for the hydrus model[J].Water Resources Research,2019,55(11):8967-8989.[55]HUA C Y,ZHOU G Z,YIN X,et al.Assessment of heavy metal in coal gangue:Distribution,leaching characteristic and potential ecological risk[J].Enviromental Science and Pollution Research,2018,25(32):321-331.[56]LI J Y,WANG J M.Comprehensive utilization and environmental risks of coal gangue:A review[J].Journal of Cleaner Rroduction,2019,239:1-18.[57]僮祥英,梁杰.贵州毕节市煤矸石中微量元素的综合利用潜力及其环境影响研究[J].安全与环境学报,2013,13(6):148-152.[58]丁伟,黄智龙,周家喜,等.贵州水城地区煤矸石中微量元素综合利用评价[J].矿物学报,2011,31(3):502-508.[59]LONG J,ZHANG S X,LUO K L.Selenium in Chinese coal gangue:Distribution,availability and recommendations[J].Resources Conservation and Recycling,2019,149:140-150.[60]王心斅,韩莹琰,范双喜.植物富硒研究与行业未来发展对策建议[J].中国农学通报,2014,30(33):127-132.[61]贾玮,吴隽,屈婵娟,等.硒增强植物抗逆能力及其机理研究进展[J].中国农学通报,2015,31(14):171-176.[62]吴玉星,周宗山,王孝娣,等.生长期喷施氨基酸硒叶面肥对苹果树腐烂病的控制作用研究[J].中国果树,2012(5):51-53.[63]李彦,史衍玺,张英鹏,等.盐胁迫条件下硒对小白菜抗氧化活性及膜脂过氧化作用的影响[J].植物营养与肥料学报,2008(4):749-753.[64]郁飞燕.干旱胁迫下硒对小麦种子萌发的影响[D].洛阳:河南科技大学,2012.[65]包荣坤,朱发厅,喻世晏,等.硒对重金属拮抗作用与富硒产品研究进展[J].中国畜禽种业,2018,14(10):53-55.[66]曾宇斌.土壤添加硒对大豆拮抗重金属的影响[D].广州:华南理工大学,2016.[67]吴之琳,童心昭,尹雪斌,等.硒提高植物拮抗重金属毒性的研究进展[J].粮食科技与经济,2014,39(2):22-27,65.[68]尹炳,汪建飞,师胜,等.矿业废弃地复垦土壤:作物硒吸收特征及其对重金属拮抗效应[J].环境科学,2020,41(4):1904-1913.[69]MROCZEK-ZDYRSKA M,WJCIK M.The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L.minor plants[J].Biological Trace Element Research,2012,147(1-3):320-328.[70]孙长安,尹忠东,周心澄.煤矸石山重金属元素研究进展[J].中国水土保持科学,2006,4(S1):91-94.[71]HAKANSON L.An ecological risk index for aquatic pollution control.A sedimentological approach[J].Water Res,1980,14(8):975-1001.[72]王俊,黄明,徐幸莲,等.硒及富硒功能食品研究进展[J].江苏农业科学,2003(2):53-56.[73]HASSAN M,WEN X,XU J L,et al.Development and challenges of green food in China[J].Frontiers of Agricultural Science and Engineering,2020,7(1):56-66.[74]梁龙,BRADLEY G R,谢斌,等.发展功能农业解决“隐性饥饿”[J].科技导报,2017,35(24):82-89.

Memo

Memo:
-
Last Update: 2022-03-16