|Table of Contents|

Effects of Available Potassium on Cadmium Accumulation in Zoysia Matrella

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年17
Page:
66-74
Research Field:
Publishing date:

Info

Title:
Effects of Available Potassium on Cadmium Accumulation in Zoysia Matrella
Author(s):
CHEN Yixuan1DENG Zhaozan2WU Shuangjun1YANG Yang1
(1.College of Resources and Environment,Hunan Agricultural University,Changsha,Hunan 410128;2.College of Science,Xiangzhong Normal College for Preschool Education,Shaoyang,Hunan 422000)
Keywords:
cadmiumphytoremediationavailable potassiummanilagrass
PACS:
-
DOI:
10.11937/bfyy.20210493
Abstract:
Taking cadmium tolerant plants Zoysia Matrella as test material.A pot experiment was conducted to investigate the effects of soil available potassium on Cd uptake and transportation of manilagrass,and the relationship between plant height,stem node number and stem node length and other indicators,in order to povide a reference for improving the plant varieties.The results showed that there were significant differences in plant height,stem node length,stem node number leaf number leaf length and leaf width among the nine groups.The Cd concentration of the fifth group (Cd 36.11 mg·kg-1;Fv/Fm 0.712) was close to the third group (Cd 36.22 mg·kg-1;Fv/Fm 0.714) but the two groups had significant differences in plant height,stem node length,stem node number,leaf width and dry weight.There was significant difference of available potassium and urease activity between the fifth and the third groups (P<0.05);the fifth group had the lowest available potassium content;the third group had the lowest urease activity.Although the third and fifth groups had the similar total soil Cd contents,the Cd bioconcentration factors (BCF) and translocation factor (TCF) were significantly different.They were 0.96 and 0.59 or 5.07 and 0.90 respectively.Pearson correlation analysis indicated the BCF and TCF was positively correlated with available potassium and urease,negatively correlated with soil pH.The results demonstrated that soil available potassium helps to increase the accumulation and transport of Cd in manilagrass.

References:

[1]YANG Q Q,LI Z Y,LU X N,et al.A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J].Science of the Total Environment,2018,642:690-700.[2]ZHOU L L,YANG B,XUE N D,et al.Ecological risks and potential sources of heavy metals in agricultural soils from Huanghuai Plain,China[J].Environmental Science and Pollution Research,2014,21(2):1360-1369.[3]RIZWAN M,ALI S,ADREES M,et al.A critical review on effects,tolerance mechanisms and management of cadmium in vegetables[J].Chemosphere,2017,182:90-105.[4]MAO W,ZHANG N,ZHOU F,et al.Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells[J].Human & Experimental Toxicology,2011,30(8):920-929.[5]MAHAR A A,WANG P,ALI A,et al.Challenges and opportunities in the phytoremediation of heavy metals contaminated soils:A review[J].Ecotoxicology and Environmental Safety,2016,126:111-121.[6]PANKOVIC〖KG-1.2mm〗〖JX-*3〗'〖JX*3〗〖KG*2〗D,PLESNI〖AKCˇ〗AR M,ARSENIJEVIC〖KG-1.2mm〗〖JX-*3〗'〖JX*3〗〖KG*4〗-MAKSI-MOVIC〖KG-1.2mm〗〖JX-*3〗'〖JX*3〗〖KG*2〗 I,et al.Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants[J].Annals of Botany,2000,86(4):841-847.[7]PARMAR P,KUMARI N,SHARMA V.Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress[J].Botanical Studies,2013,54:6.[8]VERBRUGGEN N,HERMANS C,SCHAT H.Mechanisms to cope with arsenic or cadmium excess in plants[J].Current Opinion in Plant Biology,2009,12(3):364-372.[9]LING Q F,HONG F H.Effects of Pb2+ on the structure and function of photosystem Ⅱ of Spirodela polyrrhiza[J].Biological Trace Element Research,2009,129(1-3):251-260.[10]包姣,韦惠琴,赵秀兰.低分子量有机酸强化烟草修复镉污染土壤的适用性研究[J].水土保持学报,2012,26(2):265-270.[11]黄益宗,朱永官,童依平,等.土壤水分变化对玉米苗期吸收积累镉的影响[J].生态学报,2004(12):2832-2836.[12]许中坚,吴灿辉,邱喜阳,等.铅-锌-镉复合污染物在土壤-芥菜/油菜系统中的迁移及交互作用[J].水土保持学报,2007(6):1-6.[13]赵晶,冯文强,秦鱼生,等.不同氮磷钾肥对土壤pH和镉有效性的影响[J].土壤学报,2010,47(5):953-961.[14]JIN S H,HUANG J Q,LI X Q,et al.Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis[J].Tree Physiology,2011,31(10):1142-1151.[15]PETTIGREW W T.Potassium influences on yield and quality production for maize,wheat,soybean and cotton[J].Physiologia Plantarum,2008,133(4):670-681.[16]WANG M,ZHENG Q S,SHEN Q R,et al.The critical role of potassium in plant stress response[J].International Journal of Molecular Sciences,2013,14(4):7370-7390.[17]DU J,YU F H,ALPERT P,et al.Arbuscular mycorrhizal fungi reduce effects of physiological integration in Trifolium repens[J].Annals of Botany,2009,104(2):335-343.[18]GAO Y,XING F,JIN Y J,et al.Foraging responses of clonal plants to multi-patch environmental heterogeneity:Spatial preference and temporal reversibility[J].Plant and Soil,2012,359(1-2):137-147.[19]HE W M,ALPERT P,YU F H,et al.Reciprocal and coincident patchiness of multiple resources differentially affect benefits of clonal integration in two perennial plants[J].Journal of Ecology,2011,99(5):1202-1210.[20]WEI S H,JI D D,TWARDOWSKA I,et al.Effect of different nitrogenous nutrients on the cadmium hyperaccumulation efficiency of Rorippa globosa (Turcz.) Thell[J].Environmental Science and Pollution Research,2015,22(3):1999-2007.[21]HE Q B,SINGH B R.Crop uptake of cadmium from phosphorus fertilizers:Ⅱ.Relationship with extractable soil cadmium[J].Water Air & Soil Pollution,1994,74(3):267-280.[22]JAFARNEJADI A R,SAYYAD G,HOMAEE M,et al.Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers,crop rotation,and soil characteristics[J].Environmental Monitoring and Assessment,2013,185(5):4087-4096.[23]CHEN S,SUN L,SUN T H,et al.Interaction between cadmium,lead and potassium fertilizer (K2SO4) in a soil-plant system[J].Environmental Geochemistry and Health,2007,29(5):435-446.[24]LIU C H,CHAO Y Y,KAO C H.Effect of potassium deficiency on antioxidant status and cadmium toxicity in rice seedlings[J].Botanical Studies,2013,54:10.[25]ZHAO Z Q,ZHU Y G,LI H Y,et al.Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum L.)[J].Environment international,2004,29(7):973-978.[26]李明锐,钟伟,杨志新,等.矿区周边农田冬种蚕豆、油菜对土壤性质的影响及作物镉铅累积特征[J].应用环境生态学报,2017,23(5):845-850.[27]关共凑,魏兴琥,陈楠纬.佛山市郊菜地土壤理化性质与重金属含量及其相关性[J].环境科学与管理,2013,38(2):78-82.[28]周红艳,付志英,何燕萍.EM原露对重金属铅胁迫下沟叶结缕草活性氧代谢的影响[J].现代农业科技,2018(18):181-182,186.[29]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.[30]HE P,YANG L P,XU X P,et al.Temporal and spatial variation of soil available potassium in China (1990-2012)[J].Field Crops Research,2015,173:49-56.[31]DAUD M K,HE Q L,LEI M,et al.Ultrastructural,metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress[J].Chemosphere,2015,120:309-320.[32]PAGE K,HARBOTTLE M J,CLEALL P J,et al.Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate[J].Science of the Total Environment,2014,487:260-271.[33]MAXWELL K,JOHNSON G N.Perspectives in experimental botany.Chlorophyll fluorescence′a practical guide[J].Journal of Experimental Botany,2000,51(345):659-668.[34]钱永强,周晓星,韩蕾,等.Cd2+胁迫对银芽柳PSⅡ叶绿素荧光光响应曲线的影响[J].生态学报,2011,31(20):6134-6142.[35]张辉.暖季型草坪草对土壤镉的耐受阈值与富集能力的研究[D].上海:上海交通大学,2012.[36]滕应,黄昌勇,龙健,等.铜尾矿污染区土壤酶活性研究[J].应用生态学报,2003(11):1976-1980.[37]王新,周启星.土壤重金属污染生态过程、效应及修复[J].生态科学,2004(3):278-281.[38]高大翔,郝建朝,金建华,等.重金属汞、镉单一胁迫及复合胁迫对土壤酶活性的影响[J].农业环境科学学报,2008(3):903-908.[39]郑黎明,张杰,杨红飞,等.镉胁迫对荻生长、镉富集和土壤酶活性的影响[J].水土保持学报,2017,31(5):334-339,344.[40]吴丹,王友保,胡珊,等.吊兰生长对重金属镉、锌、铅复合污染土壤修复的影响[J].土壤通报,2013,44(5):1245-1252.[41]杨志勇,李刚,姚成,等.苏北大丰生态工程区两种植物群落土壤酶活性比较[J].生态学报,2009,29(7):3649-3657.[42]李慧杰,徐福利,林云,等.施用氮磷钾对黄土丘陵区山地红枣林土壤酶与土壤肥力的影响[J].干旱地区农业研究,2012,30(4):53-59.[43]马宁宁,李天来,武春成,等.长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J].应用生态学报,2010,21(7):1766-1771.

Memo

Memo:
-
Last Update: 2021-12-09