|Table of Contents|

Effects of Arbuscular Mycorrhizal Fungi on Tomato Growth and Soil Respiration Rate

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年13
Page:
91-98
Research Field:
Publishing date:

Info

Title:
Effects of Arbuscular Mycorrhizal Fungi on Tomato Growth and Soil Respiration Rate
Author(s):
ZHANG Mengge1YIN Kejing1SHI Zhaoyong123CAO Libing1
(1.College of Agriculture,Henan University of Science and Technology,Luoyang,Henan 471000;2.Luoyang Key Laboratory of Symbiotic Microorganism and Green Development,Luoyang,Henan 471000;3.Key Laboratory of Earth Surface Process Analysis and Simulation,Ministry of Education,Peking University,Beijing 100871)
Keywords:
arbuscular mycorrhizal fungitomatobiomasssoil respiration rate
PACS:
-
DOI:
10.11937/bfyy.20205428
Abstract:
Taking tomato as the research object,setting four treatments including non-inoculated (CK),inoculation with BEG141,BEG167 and BEG168.A three-compartment root box culture system was used to separate the total respiratory chamber,intermycelial respiratory chamber and basic soil respiratory chamber with 30 μm and 0.45 μm nylon nets to study the effects of arbuscular mycorrhizal fungi (AMF) on tomato growth and soil each component′s respiratory rate.In order to provide a reference for the influence of arbuscular mycorrhizal on tomato growth and soil respiration rate.The results showed that all the three strains could form a good symbiotic relationship with tomato root system,and the average colonization was 88.90%.Compared with CK,the fresh weight of the underground part inoculated with BEG167 was 6.24 times that of CK treatment,and the chlorophyll content was 2.63 times that of CK treatment.The average respiration rates of the total respiratory chamber,intermycelial respiratory chamber and basal soil respiratory chamber were 26.917,24.662,21.356 g·m-2·d-1,which were significantly higher than the respiration rate of CK treatment.During the growth period of tomato,soil respiration rate showed different trends in day and night,but the respiration rate in each chamber under CK treatment was lower than that under inoculation treatment.

References:

[1]JOVANI-SANCHO A J,CUMMINS T,BYRNE K A.Soil respiration partitioning in afforested temperate peatlands[J].Biogeochemistry,2018,141(1):1-21.[2]ZHU B,CHENG W X.Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition[J].Global Change Biology,2011,17(6):2172-2183.[3]BONDLAMBERTY B,CHRISTIANSON D S,MALHOTRA A,et al.Cosore:A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data[J].Global Change Biology,2020,26(12):7268-7283.[4]王瑶,张利敏,徐胜楠,等.帽儿山3种森林生态系统土壤动物与土壤呼吸及其相互关系分析[J].生态学报,2021,41(1):172-183.[5]郑甲佳,黄松宇,贾昕,等.中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J].植物生态学报,2020,44(6):687-698.[6]ZHU M X,de BOECK H J,XU H,et al.Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation[J].Science of the Total Environment,2020,747(2):1-12.[7]王惠玲,刁华杰,崔乐乐,等.北方农牧交错带典型草地土壤呼吸及其组分对刈割强度的响应[J].草地学报,2020,28(5):1403-1411.[8]WANG R,BICHARANLOO B,BAGHERI S,et al.A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition[J].The New Phytologist,2021,230(3):857-866.[9]ZHAO X X,LI Y L,XIE Z M,et al.Effects of nitrogen deposition and plant litter alteration on soil respiration in a semiarid grassland[J].Science of the Total Environment,2020,740(2):1-10.[10]YAN W,ZHONG Y Q,LIU J,et al.Response of soil respiration to nitrogen fertilization:Evidence from a 6-year field study of croplands[J].Geoderma,2021,384(1):304-309.[11]商雨晴,解梦怡,王俊,等.不同覆盖措施下旱作玉米田土壤呼吸对氮添加的响应[J].西北大学学报,2020,50(5):711-719.[12]单慧勇,林宇浩,于镓,等.温室二氧化碳气肥环境调控系统设计[J].江苏农业科学,2019,47(4):204-208.[13]韩广轩,周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望[J].植物生态学报,2009(1):202-210.[14]LIU Q L,TANG J C,LIU X M,et al.Vertical response of microbial communicaty and degrading genes to petroleum hydro carbon contamination in saline alkaline soil[J].Journal of Environmental Sciences,2019,81(7):82-94.[15]朱教君,徐慧,许美玲,等.外生菌根菌与森林树木的相互关系[J].生态学杂志,2003,22(6):70-76.[16]CHENG L,BOOKER F L,TU C,et al.Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J].Science,2010,337(3):1084-1087.[17]BI Y L,XIAO L,GUO C,et al.Revegetation type drives rhizosphere arbuscular mycorrhizal fungi and soil organic carbon fractions in the mining subsidence area of northwest China[J].Catena,2020,195:1-9.[18]ZHANG J,EKBLAD A,SIGURDSSON B D,et al.The influence of soil warming on organic carbon sequestration of 〖JP2〗arbuscular mycorrhizal fungi in a sub-arctic grassland[J].Soil Biology & Biochemistry,2020,147:1-30.[19]SMITH S E F,SMITH F A.Roles of arbuscular mycorrhizas in plant nutrition and growth:New paradigms from cellular to ecosystem scales[J].Annual Review of Plant Biology,2011,62:227-250.[20]LIU W,ZHANG Y L,JIANG S S,et al.Spatiotemporal differences in the arbuscular mycorrhizal fungi communities in soil and roots in response to long-term organic compost inputs in an intensive agricultural cropping system on the North China Plain[J].Journal of Soils Sediments,2019(19):2520-2533.[21]AVERILL C,TURNER B L,FINZI A C.Mycorrhiza mediated competition between plants and decomposers drives soil carbon storage[J].Nature,2014(5):543-545.[22]HEINEMEYER A,HARTLEY I P,EVANS S P,et al.Forest soil CO2 flux:Uncovering the contribution and environmental responses of ectomycorrhizas[J].Global Change Biology,2007,13(8):1786-1797.[23]PHILLIPS J M,HAYMAN D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British Mycological Society,1970,55(1):158-161.[24]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.[25]ZHU M X,HANS J,de BOECK,et al.Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation[J].Science of the Total Environment,2020,747(10):122-141.[26]石兆勇,王发园,陈应龙.五指山常见热带树种的丛枝菌根真菌多样性[J].生态学报,2007,27(7):2896-2903.[27]屈明华,俞元春,王佳,等.喀斯特土壤条件下丛枝菌根真菌侵染对任豆幼苗生物量分配和根系结构特征的影响[J].生态学杂志,2021,40(3):766-776.[28]张俊英,许永利,刘小艳.丛枝菌根真菌对大棚番茄连作土壤的改良效果[J].北方园艺,2018(3):119-124.[29]DAVISON J,MOORA M,PIK M,et al.Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism[J].Science,2015,349:970-973.[30]刘耀臣,王震,王策,等.丛枝菌根真菌对盐胁迫下芹菜生长和生理指标的影响[J].北方园艺,2019(18):47-51.[31]滕秋梅,张中峰,李红艳,等.丛枝菌根真菌对镉胁迫下芦竹生长、光合特性和矿质营养的影响[J].土壤,2020,52(6):1212-1221.[32]HGBERG P,NORDGREN A,BUCHMANN N,et al.Large-scale forest girdling shows that current photosynthesis drives soil[J].Nature,2001,411(14):789-792.[33]RAIESI F,GHOLLARATA M.Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration,biomass and enzyme activities in a calcareous soil[J].Pedobiologia,2006,50:413-425.[34]李伟晶,陈世苹,张兵伟,等.半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J].植物生态学报,2018,42(8):850-862.[35]CHRIS A M,CHRIS A,STUTZ J C.Interactive effects of temperature and arbuscular mycorrhizal fungi on growth,P uptake and root respiration of Capsicum annuum L.[J].Mycorrhiza,2004,14(4):241-244.[36]石兆勇,张晓锋,王发园.菌根真菌对土壤呼吸的影响[J].生态环境学报,2010,19(1):233-238.[37]ATKIN O K,SHERLOCK D,FITTER A H.Temperature dependenceof respiration in roots colonized by arbuscular mycorrhizal fungi[J].New Phytologist,2009,182(1):188-199.[38]彭思利,申鸿,张宇亭,等.不同丛枝菌根真菌侵染对土壤结构的影响[J].生态学报,2012,32(3):863-870.[39]LI J Q,PEI J M,PENDALL E,et al.Spatial heterogeneity of temperature sensitivity of soil respiration:A global analysis of field observations[J].Soil Biology &Biochemistry,2020,141:1-28.[40]LIU Y,HE N P,ZHU J X,et al.Regional variation in the temperature sensitivity of soil organic matter decomposition in China′s forests and grasslands[J].Global Change Biology,2017,23:3393-3402.[41]周清秋,李静雯,王思敏,等.增温和线虫添加对西双版纳热带雨林土壤呼吸的短期效应[J].生态环境学报,2020,29(9):1752-1758.

Memo

Memo:
-
Last Update: 2021-10-11