|Table of Contents|

Research Progress on the Detection of Orchard Leaf Surface Information and Its Impact on the Use of Droplets

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年16
Page:
137-143
Research Field:
Publishing date:

Info

Title:
Research Progress on the Detection of Orchard Leaf Surface Information and Its Impact on the Use of Droplets
Author(s):
WANG Zhenlin1ZHOU Xi’en2SONG Shuran13SUN Daozong14LI Zhen15
(1.College of Electronic Engineering,South China Agricultural University,Guangzhou,Guangdong 510642;2.College of Engineering,South China Agricultural University,Guangzhou,Guangdong 510642;3.Guangdong Modern Agricultural Science and Technology Innovation Center for Intelligent Orchard......
Keywords:
orchard sprayleaf surface temperature and humiditystoma densityleaf surface information detectiondroplet utilization
PACS:
-
DOI:
10.11937/bfyy.20204370
Abstract:
The growth of orchards is inseparable from the use of pesticides and other plant protection products.Spraying liquid chemicals on the branches and leaves is the main plant protection operation for orchards.However,unscientific operation methods while spraying will greatly reduce the effect of pesticides.It also causes waste and bring pollution to farmland environment.As a target for receiving pesticide droplets,the temperature,humidity,and leaf surface information including stoma density of orchards leaves will affect the utilization rate of pesticide droplets.This study introduced several detection methods of leaf surface temperature,humidity and stoma density from the perspective of the above three types of orchard leaf surface information detection,and review some domestic and foreign research on the detection of orchard leaf surface information and its impact on the deposition and utilization of droplets.Meanwhile,it was concluded that the application effect of pesticide spray droplets would be affected by the above-mentioned orchard leaf surface factors to varying degrees.The spraying operation should be carried out in a refined and planned manner.Finally,new research and development directions were proposed for the precise spraying operations of orchards,in order to provide a reference for 〖JP2〗the scientific and efficient development of orchard plant protection operations in the future.

References:

[1]纪明山.农药对农业的贡献及发展趋势[J].新农业,2011(4):43-44.[2]袁会珠,王国宾.雾滴大小和覆盖密度与农药防治效果的关系[J].植物保护,2015,41(6):9-16.[3]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004(1):13-15.[4]何雄奎.中国精准施药技术和装备研究现状及发展建议[J].智慧农业(中英文),2020,2(1):133-146.[5]翟长远,赵春江,WANG N,等.果园风送喷雾精准控制方法研究进展[J].农业工程学报,2018,34(10):1-15.[6]宋淑然,李琨,孙道宗,等.山地果园植保技术与装备研究进展[J].现代农业装备,2019,40(5):2-9.[7]李恺,魏晓明,何芬.基于植物生理检测参数的温室环境控制研究进展[J].北方园艺,2020(15):130-137.[8]方学敏.叶温研究综述[J].灌溉排水,1989(2):44-47.[9]鲁墨森,刘晓辉,张鹏.铜-康铜热电偶测温技术在果树研究中的应用[J].落叶果树,2009,41(4):52-55.[10]鲁墨森,刘晓辉.自记型热电偶通风干湿温度表的制作和应用[J].落叶果树,2009,41(5):43-46.[11]PATRIZIA F,MARIA L G,GIORGIA P,et al.Vegetation growth parameters and leaf temperature:Experimental results from a six plots green roofs′ system[J].Energy,2016,115:1723-1732.[12]张慧春,郑加强,周宏平,等.农药精确施用系统信息流集成关键技术研究[J].农业工程学报,2007(5):130-136.[13]马伟,祁力钧,王秀,等.温室智能装备系列之一百零二温室变量弥雾机的作物叶片温度探测模块设计[J].农业工程技术,2018,38(7):52-53.[14]ZHANG L L,ZHANG S.The quantitative impact of different leaf temperature determination on computed values of stomatal conductance and internal CO2 concentrations[J].Agricultural & Forest Meteorology,2019,279:107700.[15]BASSIMBA D D M,INTRIGLIOLO D S,DALLA M A,et al.Leaf wetness duration in irrigated citrus orchards in the Mediterranean climate conditions[J].Agricultural & Forest Meteorology,2017,234-235:182-195.[16]樊素.果树设施内湿度调控方法[J].河北果树,2011(5):56.[17]MARTA A D,VINCENZI M D,DIETRICH S,et al.Neural network for the estimation of leaf wetness duration:Application to a Plasmopara viticola infection forecasting[J].Physics & Chemistry of the Earth Parts A/b/c,2005,30(1-3):91-96.[18]郑海菊,李娟,赵友刚.基于MSP430F149的便携式温湿度监测仪的设计[J].青岛农业大学学报(自然科学版),2010,27(2):159-163.[19]杨光.农业温室大棚温湿度检测系统设计[J].科技风,2019(6):90-96.[20]李旺昆.基于PLC的农业大棚温湿度检测控制系统设计与研究[J].科技视界,2018(29):61-62.[21]ROY J C,VIDAL C,FARGUES J,et al.CFD based determination of temperature and humidity at leaf surface[J].Computers & Electronics in Agriculture,2008,61(2):201-212.[22]杨玮,郝子源,李民赞,等.果树叶片雾滴沉积量检测系统设计与试验[J].农业机械学报,2017,48(S1):8-14.[23]HORNERO G,GAITAN P J E,SERRANO F E,et al.A novel low-cost smart leaf wetness sensor[J].Computers & Electronics in Agriculture,2017,143:286-292.[24]SMITH D B,ASKEW S D,MORRIS W H,et al.Drop letsize and leaf morphology effects on pesticide spray deposition[J].Transactions of the Asae,2000,43(2):255-259.[25]魏文俊,王兵,牛香.叶片微观结构变化对其颗粒物滞纳能力的影响[J].环境科学,2020,41(7):3136-3147.[26]YU Y,ZHU H,FRANTZ J M,et al.Evaporation and coverage area of pesticide droplets on hairy and waxy leaves[J].Biosystems Engineering,2009,104(3):324-334.[27]NEINHUIS C,BARTNLOTT W.Characterization and distribution of water-repellent,self-cleaning plant surfaces[J].Annals of Botany,1997(6):667-677.[28]WANG S J,WANG H J,LI C,et al.Adsorption characteristics of droplets applied on non-smooth leaf surface of typical crops[J].International Journal of Agricultural & Biological Engineering,2016,9(1):35-41.[29]杨希娃,代美灵,宋坚利,等.雾滴大小、叶片表面特性与倾角对农药沉积量的影响[J].农业工程学报,2012,28(3):70-73.[30]许小龙,徐广春,徐德进,等.植物表面特性与农药雾滴行为关系的研究进展[J].江苏农业学报,2011,27(1):214-218.[31]WAGNER P,FURSTNER R,BARTHLOTT W,et al.Quantitative assessment to the structural basis of water repellency in natural and technical surfaces[J].Journal of Experimental Botany,2003,54(385):9.[32]NAIRN J J,FORSTER W A,van LEEUWEN R M,et al.‘Universal’ spray droplet adhesion model-accounting for hairy leaves[J].Weed Research,2013,53(6):407-417.[33]杨天乐,吴峰峰,刘涛,等.作物气孔的作用及其影响因素的研究进展[J].北方园艺,2020(3):143-148.[34]李东升,姚静远,刘楠.植物叶面物理信息检测技术研究进展[J].中国计量学院学报,2014,25(3):238-244.[35]MELE G,GARGIULO L.Automatic cell identification and counting of leaf epidermis for plant phenotyping[J].Methods X,2020(7):100860.[36]王淑杰,张伟,何海兵,等.典型植物叶片对农药润湿特性及持药量的影响[J].吉林大学学报(工学版),2013,43(S1):564-568.[37]许焕,付生艳,马明呈,等.冬瓜杨等几种杨树叶片气孔测量与分析[J].防护林科技,2018(9):13-14.[38]李青林,王锦涛.基于光干涉技术的叶片表面微结构特征获取与表征[J].江苏农业科学,2017,45(24):219-221.[39]朱济友,徐程扬,吴鞠.基于eCognition植物叶片气孔密度及气孔面积快速测算方法[J].北京林业大学学报,2018,40(5):37-45.[40]孙壮壮,姜东,蔡剑,等.单子叶作物叶片气孔自动识别与计数技术[J].农业工程学报,2019,35(23):170-176.[41]王景旭.温室环境中靶标周围流场对雾滴附着行为的影响[D].北京:中国农业大学,2016.[42]NAIRN J J,FORSTER W A,van LEEUWEN R M.Effect of solution and leaf surface polarity on droplet spread area and contact angle[J].Pest Management Science,2016,72(3):551-557.[43]夏侯炳,宋淑然,孙道宗,等.喷雾压力对远射程及宽喷幅风送式喷雾机雾滴粒径的影响[J].河南农业科学,2019,48(2):154-160.[44]HONG S W,ZHAO L,ZHU H.CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard:Tree deposition and off-target losses[J].Atmospheric Environment,2018,175:109-119.[45]孙桐.农药雾滴空间运行的多因素作用机制研究[D].大连:大连理工大学,2018.[46]陶波,孔令伟.无人机喷雾雾滴分布研究[J].东北农业大学学报,2018,49(8):64-72.[47]HOFFMANN W C,SALYANI M.Spray deposition on citrus canopies under different meteorological conditions[J].Transactions of the Asae,1996,39(1):17-22.[48]DEFRAEYE T,VERBOVEN P,HO Q T,et al.Convective heat and mass exchange predictions at leaf surfaces:Applications,methods and perspectives[J].Computers & Electronics in Agriculture,2013,96:180-201.[49]王穗,彭尔瑞,吴国星,等.植物叶面农药雾滴蒸发时间研究在我国的应用[J].广东农业科学,2009(11):104-107.[50]DORR G J,WANG S,MAYO L C,et al.Impaction of spray droplets on leaves:influence of formulation and leaf character on shatter,bounce and adhesion[J].Experiments in Fluids,2015,56(7):1-17.[51]祁力钧,王沛,张建华,等.杂草叶片表面结构对雾滴铺展和蒸发的影响[J].排灌机械工程学报,2012,30(3):335-340.[52]兰玉彬,彭瑾,金济.农药喷雾粒径的研究现状与发展[J].华南农业大学学报,2016,37(6):1-9.[53]牛萌萌,段洁利,方会敏,等.果园施药技术研究进展[J].果树学报,2019,36(1):103-110.

Memo

Memo:
-
Last Update: 2021-12-08