|Table of Contents|

Effects of Arbuscular Mycorrhizal Fungi on Photosynthetic Fluorescence Characteristics in Paeonia ostii ‘Fengdan’ Seedlings

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年11
Page:
76-84
Research Field:
Publishing date:

Info

Title:
Effects of Arbuscular Mycorrhizal Fungi on Photosynthetic Fluorescence Characteristics in Paeonia ostii ‘Fengdan’ Seedlings
Author(s):
ZHANG Wenke1SONG Chengwei1WEI Dongfeng2SHI Zhaoyong1HOU Xiaogai1
(1.College of Agriculture,Henan University of Science and Technology,Luoyang,Henan 471023;2.Luoyang Vocational College of Science and Technology,Luoyang,Henan 471822)
Keywords:
AMFPaeonia ostii ‘Fengdan’chlorophyllphotosynthetic fluorescence characteristics
PACS:
-
DOI:
10.11937/bfyy.20204320
Abstract:
Taking ‘Fengdan’ seedlings as the test material,growing in pots and inoculating exogenous AMF Gigaspora rosea and non-inoculating,the plant biomass,chlorophyll relative content,gas exchange parameters,photosynthetic response curve and chlorophyll fluorescence parameters were measured.The effects and response mechanism of arbuscular mycorrhizas fungi (AMF) on photosynthetic characteristics of oil peony Paeonia ostii ‘Feng Dan’ seedlings were analyzed,in order to provide a refernce for improving the growth status and enhancing the yield of ‘Fengdan’.The results showed that the dry weight of aboveground and underground parts and relative content of chlorophyll of the ‘Fengdan’ seedlings that inoculated with exogenous AMF were significantly increased compared to plants that non-inoculated with AMF.Additionally,by inoculated with exogenous AMF,the net photosynthetic rate (Pn) under natural light intensity of plants increased by 37%,indicating that the photosynthetic capacity was significantly enhanced.The apparent quantum efficiency (AQY) and carboxylation efficiency (CE) were increased by 24% and 5%,indicating that their ability to transform light energy and utilize CO2 was enhanced.Net photosynthetic rate at light saturation (LSPn),the light saturation point (LSP),net photosynthetic rate at CO2 saturation (Amax) and CO2 saturation point (CSP) were significantly increased by 49%,36%,27% and 7%,indicating that their light and potential were significantly increased.Absorption of light energy per unit area (ABS/CSo),capture the light energy per unit area (TRo/CSo) significantly increased 8% and 13%,respectively,to explain the absorption and the ability to capture light energy obviously enhanced;probability of trapped excitons moving electrons into the electron transport chain beyond Q-A(Ψo),quantum yield for electron transport (ΨEo) significantly increased by 39% and 46% respectively,in J point relative ariabvle fluorescence intensity (Vj) significantly reduced 40%,explain the electron transfer ability increased significantly.The actual optical quantum yield Y(Ⅱ) of PS Ⅱ significantly increased by 44%,and the regulatory energy dissipative quantum yield Y(NPQ) of excitation energy significantly decreased by 21%,indicating that it reduced energy loss and used more energy for photochemical reaction.Inoculation of AMF can significantly increasing the content of chlorophyll in ‘Fengdan’,and enhancing the ability of absorbing and capturing light energy,improving the electron transfer efficiency and reducing the energy loss,thus improving light energy conversion and CO2 fixation of Paeonia ostii ‘Fengdan’ plants,and further improve the photosynthetic capacity and promote its growth.

References:

[1]田蜜,陈应龙,李敏,等.丛枝菌根结构与功能研究进展[J].应用生态学报,2013,24(8):2369-2376.[2]PARNISKE M.Arbuscular mycorrhiza:The mother of plant root endosymbioses[J].Nature Reviews Microbiology,2008,6(10):763-775.[3]悦飞雪,李继伟,王艳芳,等.生物炭和AM真菌提高矿区土壤养分有效性的机理[J].植物营养与肥料学报,2019,25(8):1325-1334.[4]吴亚胜,王其传,祁红英,等.育苗基质中添加丛枝菌根真菌菌剂对辣椒幼苗生长和光合参数的影响[J].蔬菜,2018(7):12-16.[5]BOWLES T M,BARRIOSMASIAS F H,CARLISE E,et al.Effects of arbuscular mycorrhizae on tomato yield,nutrient uptake,water relations,and soil carbon dynamics under deficit irrigation in field conditions[J].Science of the Total Environment,2016(566-567):1223-1234.[6]杨国,卢可,朱高樑,等.丛枝菌根真菌摩西球囊霉对铜胁迫下白术幼苗光合特性及抗氧化酶活性的影响[J].植物生理学报,2018,54(4):618-626.[7]吕星光,刘润进,李敏.不同丛枝菌根真菌对西瓜嫁接苗生长和光合作用的影响[J].中国蔬菜,2017(5):46-49.[8]陈笑莹,宋凤斌,朱先灿,等.低温胁迫下丛枝菌根真菌对玉米幼苗形态、生长和光合的影响[J].华北农学报,2014,29(S1):155-161.[9]MATHUR S,SHARMA M P,JAJOO A.Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress[J].Journal of Photochemistry and Photobiology B-biology,2018,180:149-154.[10]段祥光,张利霞,刘伟,等.施氮量对油用牡丹‘凤丹’光合特性及产量的影响[J].南京林业大学学报(自然科学版),2018,42(1):48-54.[11]宋宏伟,刘少华,沈植国,等.不同栽培条件下油用牡丹种子产量及含油率[J].经济林研究,2018,6(1):105-109.[12]陈丹明,郭娜,郭绍霞.丛枝菌根真菌对牡丹生长及相关生理指标的影响[J].西北植物学报,2010,30(1):131-135.[13]梁倩倩,王维华,郭绍霞,等.盐胁迫下丛枝菌根对牡丹光合作用的影响[J].青岛农业大学学报(自然科学版),2013,30(2):79-83.[14]TROUVELOT A,KOUGH J L,GIANINAZZI-PEARSON V.Mesure du tauxdemycorhization VA d′un system eradiculaire.Recherche de methods d′estimatio nayantune signification function nelle[M]//GIANINAZZI-PEARSON V,GIANINAZZI S.INRA,Paris:Physiological Andgenetical Aspects of Mycorrhizae,1986.[15]SRIVASTAVA A,GUISSE B,GREPPIN H,et al.Characterization of the 820 nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves[J].Functional Plant Biology,2003,30(7):1597-1602.[16]姚青,冯固,李晓林.不同作物对VA菌根真菌的依赖性差异[J].作物学报,2000,26(6):874-878.[17]梁雪飞,唐梦君,吕立新,等.三种丛枝菌根真菌对茅苍术的生长、生理及主要挥发油成分的影响[J].生态学杂志,2018,37(6):1871-1879.[18]朱凌骏,傅致远,张金池,等.菌根真菌对榉树光合特性的影响[J].南京林业大学学报(自然科学版),2018,42(6):121-127.[19]苏金豹,王东亮,杨立学.落叶松四种根系分泌物对胡桃楸根系活力和菌根侵染率的影响[J].生态学杂志,2013,32(10):2659-2664.[20]李娜,张峰举,许兴,等.增温对宁夏北部春小麦叶片光合作用的影响[J].生态学报,2019,39(24):9101-9110.[21]王晓燕,彭礼琼,金则新.模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响[J].生态学报,2016,36(16):5204-5214.[22]VAFADAR F,AMOOAGHAIE R,OTROSHY M.Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth,stevioside,NPK,and chlorophyll content of Stevia rebaudiana[J].Journal of Plant Interactions,2014,9(1):128-136.[23]黄春燕,苏文斌,张少英,等.施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J].作物学报,2018,44(10):1496-1505.[24]魏双雨,吉文丽,杨丹怡.叶施硼、锌对油用牡丹‘凤丹’光合特性和矿质元素含量的影响[J].西北林学院学报,2019,34(2):140-147.[25]郑舜怡,郭世荣,张钰,等.丛枝菌根真菌对辣椒光合特性及根际微生物多样性和酶活性的影响[J].西北植物学报,2014,34(4):800-809.[26]王飞,刘领,武岩岩,等.玉米花生间作改善花生铁营养提高其光合特性的机理[J].植物营养与肥料学报,2020,26(5):901-913.[27]李佳,刘济明,文爱华,等.米槁幼苗光合作用及光响应曲线模拟对干旱胁迫的响应[J].生态学报,2019,39(3):160-169.[28]叶子飘,康华靖,段世华,等.不同CO2浓度下大豆叶片的光合生理生态特性[J].应用生态学报,2018,29(2):583-591.[29]原佳乐,马超,冯雅岚,等.不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应[J].植物生理学报,2018,54(6):1119-1129.[30]贺国强,张鹏飞,张会慧,等.弱光烟草幼苗低温后不同光强下叶片的光能利用特点[J].核农学报,2016,30(6):1234-1239.[31]王一鸣,唐剑,龙胜举,等.NaCl胁迫对接种AMF费菜生长和叶绿素含量及荧光参数的影响[J].干旱地区农业研究,2017,35(6):134-139,153.[32]李辛,赵文智.荒漠区植物雾冰藜光合特性对混合盐碱胁迫的响应[J].生态学报,2018,38(4):1183-1193.[33]黄志,许炜萍,郁昉斌,等.接种AMF对弱光环境及盐胁迫下甜瓜光合特性的影响[J].西北植物学报,2018,38(2):307-315.[34]李红杰,刘佳,赵成凤,等.干旱胁迫及复水处理对玉米苗期叶片光化学活性的影响[J].植物生理学报,2020,56(5):997-1005.[35]徐祥增,张金燕,张广辉,等.光强对三七光合能力及能量分配的影响[J].应用生态学报,2018,29(1):193-204.

Memo

Memo:
-
Last Update: 2021-09-15