|Table of Contents|

Optimization of Polysaccharide Extraction From Ganoderma lucidum of Solid-state Fermentation in Burdock by Genetic Neural Network

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年22
Page:
103-108
Research Field:
Publishing date:

Info

Title:
Optimization of Polysaccharide Extraction From Ganoderma lucidum of Solid-state Fermentation in Burdock by Genetic Neural Network
Author(s):
ZHU Huixia1DONG Yuwei2
(1.College of Management,Liaoning University of Technology,Jinzhou,Liaoning 121001;2.College of Food (Biology) Engineering,Xuzhou Institute of Technology,Xuzhou,Jiangsu 221018)
Keywords:
adaptive genetic neural network algorithmburdockGanoderma lucidumpolysaccharideregression analysis
PACS:
-
DOI:
10.11937/bfyy.20200663
Abstract:
Burdock and Ganoderma lucidum were used as test materials,a new adaptive genetic neural network algorithm was used to study the optimal process of extracting polysaccharides from Ganoderma lucidum of solid-state fermentation in burdock.The test data of polysaccharide content were used to fit the predictive data of the adaptive genetic neural network algorithm,and the predictive data of the adaptive genetic neural network algorithm were compared with that of the regression analysis method.The results showed that prediction and optimization of the adaptive genetic neural network algorithm was higher than that of the regression analysis method.The optimal theoretical parameters for the polysaccharides extracting from Ganoderma lucidum of solid-state fermentation in burdock by this method was follow,liquid-solid ratio 0.32 mL·g-1,the filling volume 0.18 g·mL-1,the degree of crushing 6.19 mesh sieve,and the maximum of polysaccharide content was 25.13 mg·g-1,which was better than the polysaccharide content of 25.07 mg·g-1 obtained by the regression method.

References:

[1]ZHANG S,PANG G,CHEN C,et al.Effective cancer immunotherapy by Ganoderma lucidum polysaccharide-gold nanocomposites through dendritic cell activation and memory T cell response[J].Carbohydrate Polymers,2019,205:192-202.[2]董玉玮,蒋如梦,苗敬芝,等.牛蒡皮固体培养灵芝多糖对慢性炎性痛小鼠的影响[J].食品研究与开发,2019,40(12):25-32.[3]郭金英,朱优优,刘贵巧,等.不同品种灵芝主要活性成分与营养物质比较分析[J].北方园艺,2017(17):177-180.[4]LIU Z,XING J,ZHENG S,et al.Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response[J].Carbohydrate Polymers,2016,142:141-148.[5]郑振佳,张瑞凌,张敏敏,等.HPLC-DAD-Q-TOF-MS在线筛选鉴定牛蒡中的抗氧化成分[J].食品科学,2019,40(8):175-179.[6]KUMAR S A,WARD L C,BROWN L.Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate,high-fat diet-fed rats[J].British Journal of Nutrition,2016,116(9):1502-1511.[7]王士杰,韩凤波,罗超.微波辅助法提取牛蒡叶粗多糖的工艺研究[J].北方园艺,2015(3):122-125.[8]张命龙,杨秋玲,阚慧建,等.基于牛蒡根的灵芝固体发酵菌质化学成分的初步分析[J].中国食用菌,2019,38(3):44-49.[9]陈瑞荣,平兆华,陈骏佳,等.灵芝栽培菌丝多糖的提取优化、表征和生物活性分析[J].食品科技,2019,44(9):204-208,215.[10]吴迪,袁峰,王国瑞,等.基于通气量调控的灵芝菌丝体胞内多糖发酵工艺优化[J].食用菌学报,2019,26(1):35-40.[11]贾少杰,解修超,邓百万,等.微波辅助法提取灵芝多糖工艺的优化及抑菌活性[J].北方园艺,2018(18):118-125.[12]郑丹,陈锦华,林占熺.鲜菌草与灵芝菌丝发酵菌质多糖提取工艺及其体外抗氧化性[J].北方园艺,2017(9):120-125.[13]NITA C,VANDEWALLE S,MEYERS J.On the efficiency of gradient based optimization algorithms for DNS-based optimal control in a turbulent channel flow[J].Computers & Fluids,2016,125:11-24.[14]WANG S H,ZHANG Y D,DONG Z C,et al.Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection[J].International Journal of Imaging Systems and Technology,2015,25(2):153-164.[15]朱会霞,李微微,李彤煜,等.区间自适应遗传算法优化无约束非线性规划问题[J].数学的实践与认识,2019,49(4):110-116.[16]董玉玮,周洁,苗敬芝,等.灵芝在牛蒡固体培养基中发酵工艺优化及菌丝多糖的体外抗氧化活性[J].食品科学,2019,40(10):149-156.[17]KURKOVA V.Kolmogorov′s theorem and multilayer neural networks[J].Neural Networks,1992,5(3):501-506.[18]ZHANG Y,RUAN G.Bernoulli neural network with weights directly determined and with the number of hidden-layer neurons automatically determined[J].Lecture Notes in Computer Science,2009,5551:36-45.[19]朱会霞,王福林,张勇,等.改进遗传算法优化非线性规划问题[J].数学的实践与认识,2013,43(7):117-125.

Memo

Memo:
-
Last Update: 2021-02-07