|Table of Contents|

Advances in Research on Arbuscular Mycorrhizal Fungi Promoting Resistance of Plants to Cadimium

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年01
Page:
137-142
Research Field:
Publishing date:

Info

Title:
Advances in Research on Arbuscular Mycorrhizal Fungi Promoting Resistance of Plants to Cadimium
Author(s):
WANG LeiWU ZilongZHANG HaoZHAO Xin
(School of Life Science and Engineering,Handan University,Handan,Hebei 056000)
Keywords:
arbuscular mycorrhizacadimiumtolerance
PACS:
-
DOI:
10.11937/bfyy.20200617
Abstract:
Arbuscular mycorrhizal fungi (AMF) is a kind of plant symbiotic fungi living in soil.Lots of studies have shown that AMF can improve the stress resistance and tolerance of plants to heavy metals.In this study,the advance of AMF and plant was introduced in order to promote the further research on the mechanism of AMF promoting plant tolerance to Cd.Outside the roots,AMF could absorb and hold Cd directly,and change plant rhizosphere microenvironment in soil,thus effect the morphology of the Cd and biological effectiveness,enhance the resistance of plants to Cd stress.Within the roots,AMF regulated specific physiological and biochemical processes in plants,such as chelation,transport,and activation of antioxidant defense systems,to reduce stress and damage to plants caused by high concentrations of Cd.In addition,AMF could also resist Cd stress by promoting plant growth.

References:

[1]SCHWARZOTT D,WALKER C,SCHLER A.Glomus,the largest genus of the arbuscular mycorrhizal fungi (Glomales),is nonmonophyletic[J].Molecular Phylogenetics and Evolution,2001,21(2):190-197.[2]刘灵芝,张玉龙,李培军,等.丛枝菌根真菌(Glomus mosseaes)对玉米吸镉的影响[J].土壤通报,2011,42(3):568-572.[3]秦芳玲,王敬国,李晓林,等.VA菌根真菌和解磷细菌对红三叶草生长和氮磷营养的影响[J].草业学报,2009,9(1):9-14.[4]陈保冬,张莘,伍松林,等.丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J].岩矿测试,2019,38(1):1-25.[5]贺学礼,高露,赵莉莉.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长及抗旱性的影响[J].生态学报,2011,31(4):1029-1037.[6]毕银丽,张延旭,江彬,等.水分胁迫下AM真菌与解磷细菌协同对玉米生长及土壤肥力的影响[J].煤炭学报,2019,44(12):3655-3661.[7]杨海霞,刘润进,郭绍霞,等.AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J].草业学报,2014,23(4):195-203.[8]王发园,林先贵.丛枝菌根在植物修复重金属污染土壤中的作用[J].生态学报,2007,27(2):793-801.[9]WU S L,CHEN B D,SUN Y Q,et al.Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.]Pers.) is enhanced by arbuscular mycorrhiza in Cr (Ⅵ)-contaminated soils[J].Enviromental Toxicology and Chemistry,2014,33:2105-2113.[10]REDONDO-GC〖JX-+0.8mm〗〖KG-*2〗'MEZE,MATEOS-NARANJO L.Andrades-moreno accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator[J].Arthrocnemum Macrostachyum Journal of Hazardous Materials,2010,184:299-307.[11]KAUR H,GARG N.Recent perspectives on cross talk between cadimium,zinc,and arbuscular mycorrhizal fungi in plants[J].Journal of Plant Growth Regulation,2018,37:680-693.[12]MENAHEM E,MENI B H.Heavy metals and metalloids:Sources,risks and strategies to reduce their accumulation in horticultural crops[J].Scientia Horticulturae,2018,234(4):431-444.[13]LIU Y,WANG X,ZENG G,et al.Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud.[J].Chemosphere,2007,69(1):99-107.[14]HASHEM A,ABD-ALLAH E F,ALQARAWI A A,et al.Alleviation of cadmium stress in Solanum lycopersicum L.by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance[J].Saudi Journal of Biological Sciences,2016,23(2):272-281.[15]de FTIMA PEDROSO D,BARBOSA M V,DOS SANTOS J V,et al.Arbuscular mycorrhizal fungi favor the initial growth of Acacia mangium,Sorghum bicolor,and Urochloa brizantha in soil contaminated with Zn,Cu,Pb,and Cd[J].Bulletin of Environmental Contamination and Toxicology,2018,101(3):386-391.[16]刘芳,景戌旋,胡健,等.镉污染和接种丛枝菌根真菌对紫花苜蓿生长和氮吸收的影响[J].草业学报,2017,26(2):69-77.[17]卢鑫,胡文友,黄标,等.丛枝菌根真菌对玉米和续断菊间作镉吸收和累积的影响[J].土壤,2017,49(1):111-117.[18]RASK K A,JOHANSEN J L,KJLLER R,et al.Differences in arbuscular mcorrhizal colonisation influence cadmium uptake in plants[J].Environmental and Experimental Botany,2019,162(1):223-229.[19]陈良华,胡相伟,杨万勤,等.接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响[J].环境科学学报,2017,37(1):308-317.[20]YU X Z,CHENG J M,WONG M H.Earthworm mycorrhiza interaction on Cd uptake and growth of ryegrass[J].Soil Biology & Biochemistry,2005,37(2):195-201.[21]刘灵芝,李培军,巩宗强,等.矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响[J].微生物学通报,2011,38(4):575-582.[22]HUTCHINSON J J,YOUNG S D,BLACK C R,et al.Determining uptake of radio-labile soil cadmium by arbuscular mycorrhizal hyphae using isotopic dilution in a compartmented-pot system[J].New Phytologist,2004,164(3):477-484.[23]JONER E J,LEYVAL C.Uptake of Cd-109 by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amented with high and low concentrations of cadmium[J].New Phytologist,1997,135(2):353-360.[24]GONZLEZ-CHVEA M C,CARRILLO-GONZLEZ R,WRIGHT S F,et al.The role of glomalin,a protein produced by arbuscular mycorrhizal fungi,in sequestering potentially toxic elements[J].Environmental Pollution,2004,130(3):317-323.[25]陈保冬,李晓林,朱永官.丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J].菌物学报,2005,24(2):283-291.[26]GONZLEZ-CHVEA M C,DO HAEN J,VANGRONSVELD J,et al.Copper sorption and accumulation by the extraradical mycelium of different Glomus spp.(arbuscular mycorrhizal fungi) isolated from the same polluted soil[J].Plant and Soil,2002,240(2):287-297.[27]GONZLEZ-CHVEZ M C,CARRILLO-GONZALEZ R,WRIGHT S F,et al.The role of glomalin,a protein produced by arbuscular mycorrhizal fungi,in sequestering potentially toxic elements[J].Environmental Pollution,2004,130:317-323.[28]王晓娟,王文斌,杨龙,等.重金属镉(Cd)在植物体内的转运途径及其调控机制[J].生态学报,2015,35(23):7921-7929.[29]MOTAHARPOOR Z,TAHERI H,NADIAN H.Rhizophagus irregularis modulates cadmium uptake,metal transporter,and chelator gene expression in Medicago sativa[J].Mycorrhiza,2019,29:389-395.[30]张玉秀,柴团耀.植物重金属调节基因的分离和功能[M].北京:中国农业出版社,2006.[31]孙红.丛枝菌根真菌对Cd胁迫下柳枝稷生长和能源品质的影响及机理研究[D].北京:中国农业大学,2018.[32]CUI G J,AI A Y,CHEN K,et al.Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements,and related gene expression[J].Ecotoxicology and Environmental Safety,2019,171(4):231-239.[33]屈雁朋,房玉林,刘延琳,等.镉胁迫下接种AM真菌对葡萄次生代谢酶活性的影响[J].西北林学院学报,2009,24(5):101-105.[34]ABDELHAMEED R E,METWALLY R A.Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis[J].Internationl Journal of Phytoremediation,2019,21(7):663-671.[35]RIVERA-BECERRIL F,van TUINEN D,MARTIN-LAURENT F,et al.Molecular changes in Pisum sativum L.roots during arbuscular mycorrhiza buffering of cadmium stress[J].Mycorrhiza,2005,16:51-60.[36]KOTHARI S K,MARSCHNER H,RMHELD V.Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.)[J].New Phytologist,1991,117:649-655.[37]GONZLEZ-CHAVEZ M D A,ORTEGA-LARROCEAM D,CARRILLO-GONZALEZ R,et al.Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza[J].Fungal Biology,2011,115(12):1197-1209.[38]LANFRANCO L,NOVERO M,BONFANTE P.The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts[J].Plant Physiology,2005,137(4):1319-1330.[39]GONZLEZ-GUERRERO M,OGER E,BENABDELLAH K,et al.Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices[J].Current Genetics,2010,56(3):265-274.

Memo

Memo:
-
Last Update: 2021-05-10