|Table of Contents|

Effects of Compontents and Habitat Differences on Litter Production and Decomposition of the Primeval Abies georgei Forest in Southeastern Tibet

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年23
Page:
80-87
Research Field:
Publishing date:

Info

Title:
Effects of Compontents and Habitat Differences on Litter Production and Decomposition of the Primeval Abies georgei Forest in Southeastern Tibet
Author(s):
DAI Songjia1ZHOU Chenni234DUAN Fei234FANG Jiangping234LONG Chunlin1
(1.College of Life and Environmental Sciences,Minzu University of China,Beijing 100081;2.Res.Institute of Tibet Plateau Ecology,Tibet Agriculture & Animal Husbandry University,Nyingchi,Tibet 860000;3.Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture & Animal Husbandry University),Ministry of Education,Nyingchi,Tibet 860000;4.United Key Laboratories of Ecological Security,Tibet Autonomous Region,Nyingchi,Tibet 860000)
Keywords:
Southeast Tibetannual yield of litterAbies georgei var. Smithii forestcomponentshabitats
PACS:
-
DOI:
10.11937/bfyy.20200540
Abstract:
Taking the litterfalls of Abies georgei var.Smithii in Southeast Tibet as the test material,the production dynamic characteristics of different components and the decomposition characteristics of litters under different components and habitat conditions were studied by litter decomposition bag methods.The purpose of this study was to provide basis data and theoretical foundation for in-depth understanding of the material cycle process of forest ecosystem in high altitude and cold environment.The results showed that,the annual yield of litter in the original fir forest in Southeastern Tibet was (3 555.95±256.79)kg?hm-2,yield of leaves((1 939.17±84.65)kg?hm-2)>yield of branches((1 001.27±46.98)kg?hm-2)>yield of others((615.51±26.74)kg?hm-2).The yield of litters were significantly different in month and component.The decomposition rate of litters of different components was in the order of leaf-sample(2.21%)>natural sample(2.17%)>branch sample(1.70%).The decomposition rate of litters under different habitat conditions was in the order of IF(2.17%)>OF(1.94%)>BF(1.93%).Under the condition of different components,50% of the decomposition time of litters of natural sample,leaf sample and branch sample were 2.11,2.34 and 3.08 years,and 95% of the decomposition time were 8.96,10.02 and 13.18 years;under different habitat conditions (IF,OF and BF),50% of the decomposition time of litters were 2.11,2.52 and 2.34 years,and 95% of the decomposition time were 8.96,10.01 and 10.84 years.

References:

[1]BERG B.Litter decomposition and organic matter turnover in northern forest soils[J].Forest Ecology and Management,2000,133(1/2):13-22.[2]MOORE T R,TROFYMOW J A,PRESCOTT C E,et al.Patterns of carbon,nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forest[J].Ecosystems,2006,9(1):46-62.[3]BOERNER R E J.Foliar nutrient use efficiency of four deciduous tree species in relation to site fertility[J].Journal of Applied Ecology,1984,21(3):1029-1040.[4]陈金玲,金光泽,赵凤霞.小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J].应用生态学报,2010,21(9):2209-2216.[5]刘颖,韩士杰,林鹿.长白山四种森林类型凋落物动态特征[J].生态学杂志,2009,28(1):7-11.[6]赵勇,吴明作,樊巍,等.太行山针、阔叶森林凋落物分解及养分归还比较[J].自然资源学报,2009,24(9):2616-2624.[7]阎恩荣,王希华,周武.天童阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系[J].植物生态学报,2008,32(1):1-12.[8]李海涛,于贵瑞,李家永,等.井冈山森林凋落物分解动态及磷、钾释放速率[J].应用生态学报,2007,18(2):233-240.[9]窦荣鹏,江洪,余树全,等.柳杉凋落物在中国亚热带和热带的分解[J].生态学报,2010,30(7):1758-1763.[10]魏强,凌雷,张广忠,等.甘肃兴隆山主要森林类型凋落物累积量及持水特性[J].应用生态学报,2011,22(10):2589-2598.[11]赵晓春,刘建军,任军辉,等.贺兰山4种典型森林类型凋落物持水性能研究[J].水土保持研究,2011,18(2):107-111.[12]刘洋,张健,冯茂松.巨桉人工林数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-10.[13]姜沛沛,曹扬,陈云明,等.不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤的C、N、P化学计量特征[J].生态学报,2016,36(19):6188-6197.[14]李忠文,闫文德,郑成,等.亚热带樟树-马尾松混交林凋落物量及养分动态特征[J].生态学报,2013,33(24):7707-7714.[15]刘萍,张震,刘双成.天山云杉林凋落物组成及营养成分研究[J].华南农业大学学报,2014,35(3):114-116.[16]春敏莉,谢宗强,赵常明,等.神农架巴山冷杉天然林凋落量及养分特征[J].植物生态学报,2009,33(3):492-498.[17]李文华.暗针叶林概况[J].自然资源,1977(5):1-16.[18]徐凤翔.西藏森林的特征与生态成因[J].南京林业科技学院院报,1982(3):84-96.[19]方江平,巴青翁姆.西藏原始林芝云杉凋落物养分归还规律[J].自然资源学报,2013,28(7):1139-1145.[20]黄先飞,张珍明,刘盈盈,等.梵净山冷杉林凋落物动态及养分特征[J].四川农业大学学报,2018,36(2):161-166.[21]杨佳萍,廖蓉,杨万勤,等.高山峡谷区暗针叶林凋落物产量及动态[J].应用与环境生物学报,2017,23(4):745-752.[22]罗辑,程根伟,宋孟强,等.贡嘎山峨眉冷杉林凋落物的特征[J].植物生态学报,2003,27(1):59-65.[23]贾丙瑞,周广胜,刘永志,等.中国天然林凋落物量的空间分布及影响因子分析[J].中国科学:生命科学,2016,46(11):1304-1311.[24]郑金萍,郭忠玲,徐程扬,等.长白山北坡主要森林群里凋落物现存量月动态[J].生态学报,2011,31(15):4299-4307.[25]丁新景,解国磊,敬如岩,等.黄河三角洲不同人工刺槐混交林凋落物分解特征[J].水土保持学报,2016,30(4):249-253.[26]金龙,吴志祥,杨川,等.不同林龄橡胶凋落物叶分解特性与有机碳动态研究[J].热带作物学报,2015,36(4):698-705.[27]吴庆贵,吴福忠,潭波,等.高山森林林窗对凋落叶分解的影响[J].生态学报,2016,36(12):3537-3545.[28]吴鹏,王襄平,张新平,等.东北地区森林凋落叶分解速率与气候、林型、林分光照的关系[J].生态学报,2016,36(8):2223-2232.[29]刘涛,孙守琴,邱阳.川西亚高山生态系统3种典型植物凋落物分解动态特征[J].山地学报,2017,35(5):663-668.

Memo

Memo:
-
Last Update: 2021-02-19