|Table of Contents|

Effects of Bacillus amyloliquefaciens TF28 on Diversity of Rhizosphere Soil Fungi in Greenhouse Continuous Cropping Cucumber

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年23
Page:
88-95
Research Field:
Publishing date:

Info

Title:
Effects of Bacillus amyloliquefaciens TF28 on Diversity of Rhizosphere Soil Fungi in Greenhouse Continuous Cropping Cucumber
Author(s):
CAO Xu12ZHANG Shumei12LI Jing12MENG Liqiang12HU Jihua1
(1.Institute of Microbiology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150010;2.Institute of Advanced Technology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150020)
Keywords:
high throughput sequencingcontinuous cropping obstaclefungal abundanceapplication mode
PACS:
-
DOI:
10.11937/bfyy.20200243
Abstract:
Three methods,liquid (L),particle (P) and composite (LP) of the Bacillus amyloliquefaciens TF28 were used as a microbial agent.The soil samples at seedling,flowering,full fruit and later fruit bearing stage were taken and high-throughput sequencing technology was used.The results showed that Ascomycoba,Mortierellomycota,Basidiomycota and Chytridiomycota were the main phylum,Ascomycota was the main dominant group.TF28 reduced the number of fungi sequence.It could inhibit Fusarium,Sclerotinia,Gaeumannomyces and Rhizoctonia.P treatment could improve the abundance of Chaetomiumhas and relatively stable soil regulation on greenhouse Continuous Cropping Cucumber.The study provided a reference for improving cucumber barrier in greenhouse and achieving sustainable and stable and healthy production of vegetable facilities.

References:

[1]吴凤芝,刘德,栾非时.大棚土壤连作年限对黄瓜产量及品质的影响[J].东北农业大学学报,1999,30(30):245-248.[2]YIN B,CROWLEY D,SPAROVED G,et al.Bacterial functional redundancy along a soil reclamation gradient[J].Applied and Environmental Microbiology,2000,66:4361-4365.[3]LIU Y,CHEN L,WU G,et al.Identification of root-secreted compounds involved in the communication between cucumber,the Beneficial Bacillus amyloliquefaciens,and the soil-borne pathogen Fusarium oxysporum[J].Mol Plant Microbe Interact,2017,30(1):53-62.[4]何莉莉,陈阳,陈俊琴,等.黄瓜连作栽培中营养基质的微量元素、病原菌和产量的变化[J].沈阳农业大学学报,2010,41(1):13-17.[5]ISLAM S,AKANDA A M,PROVA A,et al.Isolation and identification of plant growth promoting Rhizobacteria from cucumber Rhizosphere and their effect on plant growth promotion and disease suppression[J].Front Microbiol,2016,2(6):1360.[6]李英楠,曹政,杜南山,等.3种PGPR对黄瓜生长及根际土壤环境的影响[J].北方园艺,2019(12):21-27.[7]张淑梅,沙长青,王玉霞,等.大豆内生细菌的分离及根腐病拮抗菌的筛选鉴定[J].微生物学通报,2008(10):1593-1599.[8]ZHANG S,JIANG W,LI J,et al.Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28,a biocontrol entophytic bacterium[J].Stand Genomic Sci,2016,21(11):73.[9]胡基华,李晶,张淑梅,等.解淀粉芽孢杆菌TF28对设施连作黄瓜根际土壤酶活性和微生物的调节[J].江苏农业科学,2020,48(7):152-156.[10]胡基华,李晶,曹旭,等.解淀粉芽孢杆菌TF28不同施用方式对棚室连作黄瓜根际土壤细菌多样性影响[J].江苏农业科学,2020,48(18):262-268.[11]WHITE J R,NAGARAJAN N,POP M.Statistical methods for detecting differentially abundant features in clinical metagenomic samples[J].PLoS Comput Biol.2009,5(4):e1000352.[12]孟品品,刘星,邱慧珍,等.连作马铃薯根际土壤真菌种群结构及其生物效应[J].应用生态学报,2012,23(11):3079-3086.[13]张子龙,王文全.植物连作障碍的形成机制及其调控技术研究进展[J].生物学杂志,2010,27(5):69-72.[14]周玉杰,李建华,张广宇,等.基于高通量测序的橡胶林木土壤真菌多样性及群落组成分析[J].南方农业学报,2018,49(9):1729-1735.[15]董林林,牛玮浩,王瑞,等.人参根际真菌群落多样性及组成的变化[J].中国中药杂志,2017,42(3):443-449.[16]李坤,郭修武,孙英妮,等.葡萄连作对土壤细菌和真菌种群的影响[J].应用生态学报,2009,20(12):3109-3114.[17]严铸云,王海,何彪,等.中药连作障碍防治的微生态研究模式探讨[J].中药与临床,2012,3(2):5-9.[18]CHEN F,WANG M,ZHENG Y,et al.The effect of biocontrol bacteria on Rhizosphere bacterial communities analyzed by plating and PCR-DGGE[J].Curr Microbiol,2013,67(2):177-182.[19]高志远,胡亚亚,刘兰服,等.甘薯连作对根际土壤微生物群落结构的影响[J].核农学报,2019,33(6):1248-1255.[20]QIN Y,SHANG Q,ZHANG Y,et al. Bacillus amyloliquefaciens L-S60 reforms the Rhizosphere bacterial community and improves growth conditions in cucumber plug seedling[J].Front Microbiol,2017,22(8):2620.

Memo

Memo:
-
Last Update: 2021-02-19