|Table of Contents|

Establishment of Efficient Regeneration System and Study of Hygromycin Resistance Test of Malus robusta Rehd.

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年15
Page:
82-88
Research Field:
Publishing date:

Info

Title:
Establishment of Efficient Regeneration System and Study of Hygromycin Resistance Test of Malus robusta Rehd.
Author(s):
ZHANG Ling12PENG Rihe2FU Xiaoyan2GAO Jianjie2WANG Mingqing2YAO Quanhong12
(1.College of Horticulture,Nanjing Agricultural University,Nanjing,Jiangsu 210095;2.Biotechnology Research Institute,Shanghai Academy of Agricultural Sciences,Shanghai 201106)
Keywords:
Malus robusta Rehd.regenerative systemhygromycincritical concentration
PACS:
-
DOI:
10.11937/bfyy.20194510
Abstract:
In order to establish efficient regeneration system and study the effect of hygromycin concentration on cotyledon of Malus robusta Rehd.differentiation and rooting,different plant hormone concentrations and culture methods were used.The results showed that the best medium to induce callus was Sc+2.0 mg?L-1 TDZ+0.2 mg? L-1NAA+0.5 mg?L-1GA3.The best medium for adventitious bud regeneration was Sc+2.0 mg?L-1 TDZ+0.2 mg? L-1NAA.The optimum time for dark culture was 10 days.The optimal rooting medium was 1/2MS+0.25 mg?L-1 IBA.Malus robusta Rehd.was found to be sensitive to hygromycin by the growth of cotyledon in medium with different concentration of hygromycin.In the medium with hygromycin concentration of 2.0 mg?L-1,the callus induction rate of explants was only 23.33%,and the budding rate was even lower at 9.88%.When the concentration of hygromycin was increased to 4.0 mg?L-1,the callus induction rate of explants was only 13.00%,and allus was produced,but the callus did not differentiate.With the extension of culture time,the callus became denser,then browned and died.During rooting induction,the rooting rate was 3.52% in medium with hygromycin 3.0 mg?L-1,and the explants showed callus at the bottom of the stem,but no root primordium was formed.Therefore,the critical screening concentration of Malus robusta Rehd.differentiation element was 2.0-4.0 mg?L-1,and the screening concentration of rooting hygromycin was 2.0-3.0 mg?L-1.

References:

[1]沈雪芳,韩晴,高建杰,等.八棱海棠MdPPO2B 基因的表达及功能分析[J].植物生理学报,2015,51(12):2239-2246.[2]李文然,张志宏,代红艳.八棱海棠无性系的建立[J].沈阳农业大学学报,2013,44(4):404-408.[3]李淑艳,乔玉山,渠慎春,等.不同继代培养次数对苹果八棱海棠离体培养和遗传转化的影响[J].果树学报,2008,25(6):916-919.[4]朱文碧,刘海学,黄俊轩,等.八棱海棠转 PuNHA 基因的遗传转化研究[J].北方园艺,2010(4):121-124.[5]孙春玉,孙旸,刘庆忠.根癌农杆菌介导的苹果遗传转化研究进展[J].中国农学通报,2010,26(4):231-233.[6]DOMINGUEZ A,CERVERA M,PEREZ R M,et al.Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies[J].Molecular Breeding,2004,14(2):171-183.[7]CHEN X K,ZHANG J Y,ZHANG Z,et al.Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew[J].Molecular Biology Reports,2012,39(8):8083-8089.[8]WEIG K,FLACHOWSKY H,PEIL A,et al.Heat mediated silencing of MdTFL1 genes in apple(Malus×domestica)[J].Plant Cell Tissue and Organ Culture,2015,123(3):511-521.[9]WANG N,GUO T L,SUN X,et al.Functions of two Malus hupehensis (Pamp.) Rehd.YTPs (MhYTP1 and MhYTP2) in biotic-and abiotic-stress responses[J].Plant Science,2017,261:18-27.[10]KHALED AL,RIHANI,HANS-JO J,HOFMANN T,et al.Metabolic engineering of apple by overexpression of the MdMyb10 gene[J].Journal of Genetic Engineering and Biotechnology 2017,15:263-273.[11]李坤坤,徐昌杰.蔷薇科果树离体再生与遗传转化研究进展[J].园艺学报,2017,44(9):1633-1644.[12]杨桥,蔺自敏,侯详文,等.小麦遗传转化中潮霉素筛选体系的建立及应用[J].麦类作物学报,2013,34(3):304-310.[13]PLAULA M,OLHOFT,LEX F,et al.Somers efficient soybean transformation using hygromycin B selection in the cotyledonary-node method[J].Planta,2003,216(5):723-735.[14]杨歧生,颜秋生,金小平,等.抗潮霉素B的水稻原生质体的再生[J].浙江大学学报(自然科学版),1996,30(5):582-588.[15]梁水美,高洁,孟鹏,等.不同小麦品种的潮霉素耐受性研究[J].山东农业科学,2011(2):15-17.[16]王坚,李永玲,刘炜.潮霉素B在遗传转化中应用的研究进展[J].宁夏农林科技,2017,58(12):36-43.[17]王丹,邹莉,王义,等.杨树对潮霉素的敏感性研究[J].吉林农业大学学报,2010,32(1):47-50.[18]宋欣,赵淑清.拟南芥35S:M S606/m yb26转基因植物的鉴定[J].山西农业科学,2017,45(5):680-683.[19]王哲,孙敬克,王世翔,等.烟草潮霉素抗性浓度的筛选与研究[J].河南城建学院学报,2009,18(4):65-67[20]曹尚杰,焦孟月,张彦妮,等.矮牵牛‘梅林’遗传转化体系的建立[J].西北林学院学报,2018,33(5):123-129.[21]陈晓玲,秦华明,周玲艳,等.以潮霉素为筛选标记猕猴桃遗传转化体系的初步建立[J].北方园艺,2008(1):189-191.[22]贾东杰,樊连梅,沈俊岭,等.虾青素合成关键酶基因 bkt 在‘Brookfield Gala’苹果中的遗传转化及表达[J].园艺学报,2013,40(1):21-31.[23]代红艳,张志宏,高秀岩,等.甜樱桃品种微繁体系的建立及优化[J].果树学报,2004,21(3):216-219.[24]王桂英,刘晓杰,李珊珊,等.巨霸杨组培再生体系的建立及潮霉素抗性试验[J].北方园艺,2015(13):98-102.[25]郝红梅,田 义,丛佩华,等.苹果离体叶片植株再生研究进展[J].中国果树,2011(1):55-57.[26]郑志新,张小红,李艳丽,等.八棱海棠茎段的组织培养[J].西部林业科学,2015,144(6):38-41.[27]孙爱君,章镇,姚泉洪,等.苹果与八棱海棠的试管苗外植体植株再生[J].上海农业学报,2000,16(2):23-30.[28]徐凌飞,王贵章,梁东,等.抗真菌病害基因转化苹果的研究[J].西北农林科技大学学报(自然科学版),2007,35(9):127-131.[29]张丽丽,王燕霞,张昊,等.β-1,3 葡聚糖酶基因转化提高苹果对斑点落叶病的抗性[J].园艺学报,2017,44(6):1029-1037.[30]RADCHUK V V,KORKOVOY V L.The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple cultivar‘Florina’[J].Plant Cell,Tissue and Organ Culture,2005(81):203-212.[31]LEBEDEV V,DOLGOV S.Effect of a selective agent and a plant intron on the effectiveness of transformation and expression of heterologous genes in the pear (Pyrus communis L.)[J].Genetika,2000,36(6):792-798.[32]吴瑞刚.新疆野苹果31遗传转化体系建立与MdMYB4/44基因功能初步研究[D].北京:中国农业大学,2017.

Memo

Memo:
-
Last Update: 2020-10-28