|Table of Contents|

Analysis of Differentially Expressed Gene Profile in the Root of Walnut Under Natural Temperature Regulation in the Field

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年17
Page:
30-38
Research Field:
Publishing date:

Info

Title:
Analysis of Differentially Expressed Gene Profile in the Root of Walnut Under Natural Temperature Regulation in the Field
Author(s):
LIU Yang12LU Kaizheng12BIAN Shaojie1QI Guohui12ZHANG Xuemei12GUO Suping12
(1.College of Forestry,Hebei Agricultural University,Baoding,Hebei 071000;2.Research Center for Walnut Engineering and Technology of Hebei,Lincheng,Hebei 053400)
Keywords:
walnutrootnatural temperature regulationtranscriptomesdifferentially expressed genes
PACS:
-
DOI:
10.11937/bfyy.20194278
Abstract:
Taking 15-year-old ‘Lyuling’ walnut trees as experimental materials,the effects of different ground temperatures(16.4 ℃,W0;21.7 ℃,W1;27.1 ℃,W2) on gene expression of walnut roots were studied by the high-through transcriptome sequencing technology,in order to explore the functional genes related to temperature regulation and explore the molecular mechanism of response of walnut roots to natural temperature regulation.The up-regulated (down-regulated) genes of W1vsW0,W2vsW0 and W2vsW1 were 430(247),2 110(2 494) and 2 385(3 015),respectively.GO enrichment analysis showed that differentially expressed genes of W1vsW0,W2vsW0,W2vsW1 were mainly concentrated in biological processes and molecular functions and the significantly enriched category of the three components were amino sugar catabolic process,single-organism biosynthetic process,chitin catabolic process,glucosamine-containing compound catabolic process,oxidation-reduction processand oxidoreductase activity.But the significantly enriched molecular functions category of W1vsW0 were mostly related to the metabolism of substances,while W2vsW1 were mostly related to the transcription factor.KEGG enrichment analysis illustrated that differentially expressed genes of W1vsW0,W2vsW0,W2vsW1 were annotated 74,118 and 117 KEGG pathways and there were 71 biological pathways jointly annotated,among which,the significantly enriched pathways were biosynthesis of secondary metabolites and phenylpropanoid biosynthesis.Compared with W1vsW0,the significantly enriched pathways of the differentially expressed genes of W2vsW1 increased pathway of alpha-Linolenic acid metabolism.Increased temperature could promote plant metabolism and contribute to carbohydrate accumulation.However,excessive temperature decreases the rate of water transport and a large number of genes related to the alpha-Linolenic acid metabolism acid are expressed,which suggested that alpha-Linolenic acid may play an important role in the response of walnut roots to high temperature stress.

References:

[1]魏常燕,张雪梅,齐国辉,等.不同时期拉枝刻芽对‘绿岭’核桃萌芽成枝和内源激素含量的影响[J].林业科学,2013,49(6):167-171.[2]杨永涛,潘思源,靳欣欣,等.不同品种核桃的氨基酸营养价值评价[J].食品科学,2017,38(13):207-212.[3]夏玉洁,姚小华,任华东,等.22个山核桃无性系果实营养成分的比较分析[J].中国粮油学报,2018,33(4):49-55.[4]桑玉强,张劲松.华北山区核桃液流变化特征及对不同时间尺度参考作物蒸散量的响应[J].生态学报,2014,34(23):6828-6836.[5]孙萌,刘洋,李保国,等.核桃园行内地面覆盖的土壤微域生态效应[J].生态学报,2017,37(13):4434-4443.[6]王正加,黄兴召,唐小华,等.山核桃免耕经营的经济效益和生态效益[J].生态学报,2011,31(8):2281-2289.[7]吴永波,叶波.高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J].生态学报,2016,36(2):403-410.[8]孟阿静,王治国,付彦博,等.增温对不同生育期棉花叶片中抗氧化酶活性及根系吸收能力的影响[J].新疆农业科学,2016,53(2):270-276.[9]查倩,蒋爱丽,王世平,等.果树高温逆境应答反应的研究进展[J].上海农业学报,2015,31(5):140-144.[10]WALBOT V.How plants cope with temperature stress[J].Bmc Biology,2011,9(1):1-4.[11]薛思嘉,杨再强,朱丽云,等.黄瓜花期高温胁迫对叶片衰老特性和内源激素的影响[J].生态学杂志,2018,37(2):409-416.[12]彭邵锋,陆佳,陈永忠,等.高温胁迫下21个山茶种质的生理生化响应[J].经济林研究,2016,34(3):121-125.[13]杨小飞,郭房庆.高温逆境下植物叶片衰老机理研究进展[J].植物生理学报,2014,50(9):1285-1292.[14]DAS S,KRISHNAN P,MISHRA V,et al.Proteomic changes in rice leaves grown under open field high temperature stress conditions[J].Molecular Biology Reports,2015,42(11):1545-1558.[15]冯玉龙,刘恩举,孙国斌.根系温度对植物的影响(Ⅰ):根温对植物生长及光合作用的影响[J].东北林业大学学报,1995,23(3):63-69.[16]华梦艺,顾卓雅,殷甘强,等.低温胁迫下蒙古黄芪差异表达基因分析[J].植物生理学报,2017(4):581-590.[17]刘洪博,刘新龙,苏火生,等.干旱胁迫下割手密根系转录组差异表达分析[J].中国农业科学,2017,50(6):1167-1178.[18]KANEHISA M,ARAKI M,GOTO S,et al.KEGG for linking genomes to life and the environment[J].Nucleic Acids Res,2008,36:480-484.[19]康绍忠,张建华,梁建生.土壤水分与温度共同作用对植物根系水分传导的效应[J].植物生态学报,1999,23(3):211-219.[20]马定邦.蓝光和环境温度调控拟南芥生长发育的机制研究[J].生命科学,2016(12):1418-1422.[21]孟阿静,王治国,付彦博,等.增温对不同生育期棉花叶片中抗氧化酶活性及根系吸收能力的影响[J].新疆农业科学,2016,53(2):270-276.[22]李苇,张其国,周旭丹,等.模拟增温对玉米叶片生理特性及根区土壤特性的影响[J].江苏农业科学,2018,46(18):77-81.[23]王日明,熊兴耀.高温胁迫对黑麦草生长及生理代谢的影响[J].草业学报,2016,25(8):81-90.[24]王伟东.高温和干旱胁迫下茶树转录组分析及Histone H1基因的功能鉴定[D].南京:南京农业大学,2016.[25]田尉婧,殷学仁,李鲜,等.热激转录因子调控植物逆境响应研究进展[J].园艺学报,2017,44(1):179-192.[26]陈瑾.节旋藻对温度胁迫的生理响应与差异表达基因分析[D].天津:天津商业大学,2017.[27]武汉杜米印加生物科技有限公司.DHA和α-亚麻酸的区别[J].中外健康文摘,2008,19(5):31.[28]宋敏丽,温祥珍,李亚灵.根际高温对植物生长和代谢的影响综述[J].生态学杂志,2010,29(11):2258-2264.[29]买尔当?克依木.不同长势及年龄组胡杨的茎流日变化特征研究[D].乌鲁木齐:新疆大学,2014.

Memo

Memo:
-
Last Update: 2020-11-27