|Table of Contents|

Research Progress of Greenhouse Environmental Control Based on Plant Physiological Detection

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年15
Page:
130-137
Research Field:
Publishing date:

Info

Title:
Research Progress of Greenhouse Environmental Control Based on Plant Physiological Detection
Author(s):
LI Kai12WEI Xiaoming12HE Fen12
(1.Academy of Agricultural Planning and Engineering,Ministry of Agriculture and Rural Affairs,Beijing 100125;2.Key Laboratory of Farm Building in Structure and Construction,Ministry of Agriculture and Rural Affairs,Beijing 100125)
Keywords:
plant physiological parameterdetectionsensorgreenhouseenvironmental control
PACS:
-
DOI:
10.11937/bfyy.20194095
Abstract:
With continuous expansion of protected agriculture area and continuous improvement of greenhouse cultivation technology in China,the demand for greenhouse environment intelligent control becomes more and more obvious.With the traditional greenhouse production methods,determine plant growth depends on experience entirely.Standards could not be unified,timeliness was too random,so personnel physical experience was highly demanded.Plant physiological detection could acquire plant ontology information accurately and in real time.This method was of great significance to the analysis of plant growth and the pre-guidance of environmental control.Based on the analysis of a large number of references in China and abroad,it was found that in situ on-line plant physiological detection mainly included leaf thickness,leaf temperature,stem diameter and stem flow.In this study,the research situation of using these four parameters to guide greenhouse environmental control in China and abroad was analyzed and summarized,and the prospects and difficulties of plant physiological information in intelligent greenhouse environmental control were put forward.It was hoped that it could provide reference for greenhouse environmental control research based on plant physiological parameters.

References:

[1]SYVERTSEN J P,LEVY Y.Diurnal changes in citrus leaf thickness,leaf water potential and leaf to air temperature difference[J].Journal of Experimental Botany,1982,33(4):783-789.[2]B〖KG-*4〗U〖DD(-*3/4〗′〖DD)〗RQUEZ A.Leaf thickness and water deficit in plants:a tool for field studies[J].Journal of Experimental Botany,1987,38(1):109-114.[3]MCBURNEY T.The relationship between leaf thickness and plant water potential[J].Journal of Experimental Botany,1992,43(3):327-335.[4]BRAVDO B A,SHARON Y,SELIEMANN R.Leaf thickness sensing device:U.S.Patent 6,185,833[P].2001-2-13.[5]SEELIG H D,WOLTER A,SCHRODER F G.Leaf thickness and turgor pressure in bean during plant desiccation[J].Scientia Horticulturae,2015,184:55-62.[6]GOLDHAMER D A,FERERES E,MATA M,et al.Sensitivity of continuous and discrete plant and soil water status monitoring in peach trees subjected to deficit irrigation[J].Journal of the American Society for Horticultural Science,1999,124(4):437-444.[7]GOLDHAMER D A,FERERES E.Irrigation scheduling protocols using continuously recorded trunk diameter measurements[J].Irrigation Science,2001,20(3):115-125.[8]FERERS E S,GOLDHAMER D.Suitability of stem diameter variations and water potential as indicators for irrigation scheduling of almond trees[J].The Journal of Horticultural Science and Biotechnology,2003,78(2):139-144.[9]GOLDHAMER D A,FERERES E.Irrigation scheduling of almond trees with trunk diameter sensors[J].Irrigation Science,2004,23(1):11-19.[10]FERNANDEZ J E,CUEVAS M V.Irrigation scheduling from stem diameter variations:A review[J].Agricultural and Forest Meteorology,2010,150(2):135-151.[11]FERNANDEZ J E,MORENO F,MARTIN-PALOMO M J,et al.Combining sap flow and trunk diameter measurements to assess water needs in mature olive orchards[J].Environmental and Experimental Botany,2011,72(2):330-338.[12]FERNANDEZ J E,TORRES-RUIZ J M,DIAZ-ESPEJO A,et al.Use of maximum trunk diameter measurements to detect water stress in mature ‘Arbequina’ olive trees under deficit irrigation[J].Agricultural Water Management,2011,98(12):1813-1821.[13]CUEVAS M V,TORRES-RUIZ J M,ALVAREZ R,et al.Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees[J].Agricultural Water Management,2010,97(9):1293-1302.[14]ABRAHAM N,HEMA P S,SARITHA E K,et al.Irrigation automation based on soil electrical conductivity and leaf temperature[J].Agricultural Water Management,2000,45(2):145-157.[15]DHILLON R,UDOMPETAIKUL V,ROJO F,et al.Detection of plant water stress using leaf temperature and microclimatic measurements in almond,walnut and grape crops[J].Transactions of the ASABE,2014,57(1):297-304.[16]DHILLON R.Development and evaluation of a continuous leaf monitoring system for measurement of plant water status[EB/OL].[2019-10-25].https://ucanr.edu/sites/PCWM/files/181978.pdf.[17]DHILLON R,FRANCISCO R,ROACH J,et al.A continuous leaf monitoring system for precision irrigation management in orchard crops[J].Fertility & Sterility,2014,100(6):1564-1571.[18]UPADHYAYA S K,DHILLON R,ROACH J,et al.System and methods for monitoring leaf temperature for prediction of plant water status:U.S. Patent 9,374,950[P].2014-5-2.[19]EASTHAM J,GRAY S A.A preliminary evaluation of the suitability of sap flow sensors for use in scheduling vineyard irrigation[J].American Journal of Enology and Viticulture,1998,49(2):171-176.[20]GINESTAR C,EASTHAM J,GRAY S,et al.Use of sap-flow sensors to schedule vineyard irrigation.I.Effects of post-veraison water deficits on water relations,vine growth,and yield of Shiraz grapevines[J].American Journal of Enology and Viticulture,1998,49(4):413-420.[21]GINESTAR C,EASTHAM J,GRAY S,et al.Use of sap-flow sensors to schedule vineyard irrigation.II.effects of post-veraison water deficits on composition of Shiraz grapes[J].American Journal of Enology and Viticulture,1998,49(4):421-428.[22]FERNANDEZ J E,PALOMO M J,DIAZ-ESPEJO A,et al.Heat-pulse measurements of sap flow in olives for automating irrigation:Tests,root flow and diagnostics of water stress[J].Agricultural Water Management,2001,51(2):99-123.[23]FERNANDEZ J E,GREEN S R,CASPARI H W,et al.The use of sap flow measurements for scheduling irrigation in olive,apple and Asian pear trees and in grapevines[J].Plant and Soil,2008,305(1-2):91-104.[24]BAVEL M.Integrated sap flow monitoring,data logging,automatic irrigation control scheduling system:U.S.Patent 7,280,892[P].2007-10-9.[25]李东升,高晓红,张文卓,等.植物叶片厚度和果径精密测量传感器的设计[J].传感器技术,2004,23(12):43-46.[26]李东升,陆艺,高晓红,等.植物叶片厚度精密测量仪的研究[J].仪器仪表学报,2006,27(4):403-405.[27]李东升,何满喜,朱维斌,等.植物叶片厚度日变化规律数学模型的研究[J].生物数学学报,2006,21(2):247-252.[28]宋军兰,李东升.番茄叶片厚度变化规律的比较解剖分析[J].浙江农业学报,2009,21(6):590-592.[29]张艳华,郭天荣,李东升.植物叶片厚度日变化及其与生态因子相关性的研究[J].中国计量学院学报,2010,21(3):278-282.[30]方波,郭冲冲,李加福,等.水稻叶厚对SPAD值与叶绿素含量相关性的影响研究[J].生态经济,2013,271(9):137-140.[31]方波,郭冲冲,李加福,等.厚度补偿式叶绿素仪在棉花SPAD值测定中的应用[J].传感器与微系统,2013,32(5):150-152.[32]沈小燕,崔廷,孙杰,等.基于植物叶片厚度的节能灌溉控制系统设计[J].测控技术,2013,32(5):35-39.[33]李绍华.植物器官体积微变化与果树自动化灌溉[J].果树学报,1993(S1):15-19.[34]余克顺,李绍华.水分胁迫条件下几种果树茎秆直径微变化规律的研究[J].果树科学,1999,16(2):86-91.[35]孟兆江.植株茎直径变差法监测诊断作物水分状况研究[C].贵阳:中国植物生理学会第九次全国会议,2004.[36]蒋云飞,刘九庆,韩玉杰.传感技术在精确检测植物水分中的应用研究[J].林业机械与木工设备,2004,32(12):49-51.[37]管伟,熊伟,王彦辉,等.六盘山北侧华北落叶松树干直径生长变化及其对环境因子的响应[J].林业科学,2007,43(9):1-6.[38]薛俊华,罗新兰,李天来,等.温室番茄茎秆直径微变化与土壤含水量的关系[J].江苏农业科学,2008(2):119-121.[39]张平,汪有科,湛景武,等.充分灌溉条件下桃树茎直径最大日收缩量模拟[J].农业工程学报,2010(3):38-43.[40]李晓彬,汪有科,张平.充分灌溉下梨枣树茎直径动态变化及MDS影响因子的通径分析[J].农业工程学报,2011,27(4):88-93.[41]李晓彬,汪星,汪有科,等.梨枣茎直径微变化的气象因子[J].林业科学,2012,48(1):173-180.[42]韩立新,汪有科,李晓彬.基于茎直径微变化的梨枣灌溉指标的初步研究[J].园艺学报,2012,39(3):552-560.[43]王晓森,刘祖贵,刘浩,等.番茄茎直径MDS的通径分析与数值模拟[J].农业机械学报,2012,43(8):187-192.[44]胡笑涛,王振昌,马黎华.番茄果实及茎秆微变化对分根区交替灌溉的响应[J].农业工程学报,2014,30(12):87-95.[45]方学敏.叶温研究综述[J].灌溉排水,1989,8(2):44-47.[46]方学敏,李恩羊.以叶温为参数的作物缺水指标的研究[J].水利水电技术,1991(8):56-60.[47]黄岚,冷强,白广存,等.判别分析法在描述叶温分布与植物水分状况关系上的应用[J].生物数学学报,1998(3):388-393.[48]李强征,李国臣,于海业,等.温室内黄瓜叶温变化特性的试验研究[J].农机化研究,2006(8):144-146.[49]吴强,须晖,韩亚东.日光温室番茄叶温变化特性研究[J].沈阳农业大学学报,2008,39(5):618-620.[50]刘亚,丁俊强,李建生.两个玉米自交系苗期叶温的干旱响应研究[J].作物杂志,2008(6):62-65.[51]刘亚,丁俊强,苏巴钱德,等.基于远红外热成像的叶温变化与玉米苗期耐旱性的研究[J].中国农业科学,2009,42(6):2192-2201.[52]姚振坤,罗新兰,李天来,等.日光温室番茄叶温的模拟及与环境因子的关系[J].江苏农业学报,2010,26(3):587-592.[53]刘德林,刘贤赵.GREENSPAN茎流法对玉米蒸腾规律的研究[J].水土保持研究,2006(2):134-137.[54]贾正茂,崔远来,刘方平,等.不同水分条件下棉花茎流、叶温及茎粗变化规律[J].中国农村水利水电,2012(6):73-77.[55]员玉良.基于茎直径与茎流复合测量的植物水分生理调节观测方法研究[D].北京:中国农业大学,2015.[56]段爱旺.一种可以直接测定蒸腾速率的仪器:茎流计[J].灌溉排水,1995,14(3):44-47.[57]刘浩,孙景生,段爱旺,等.温室滴灌条件下番茄植株茎流变化规律试验[J].农业工程学报,2010(10):77-82.[58]杨再强,张婷华,李永秀等.不同水分胁迫条件下温室番茄茎流和叶片水势的反应[J].中国农业气象,2012(3):382-387.[59]南庆伟,王全九,苏李君.极端干旱区滴灌条件下葡萄茎流变化规律研究[J].干旱地区农业研究,2012(6):60-67.[60]李会,刘钰,蔡甲冰,等.夏玉米茎流速率和茎直径变化规律及其影响因素[J].农业工程学报,2011(10):187-191.[61]周择福,张光灿,刘霞,等.树干茎流研究方法及其述评[J].水土保持学报,2004,18(3):137-140.[62]李国臣,于海业,马成林,等.作物茎流变化规律的分析及其在作物水分亏缺诊断中的应用[J].吉林大学学报(工学版),2004(4):573-577.

Memo

Memo:
-
Last Update: 2020-10-29