|Table of Contents|

Influence of Cadmium on the Subcellular Fractions and Chemical Forms of Brassica napus L.

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年10
Page:
1-9
Research Field:
Publishing date:

Info

Title:
Influence of Cadmium on the Subcellular Fractions and Chemical Forms of Brassica napus L.
Author(s):
ZHU Xiuhong1HAN Xiaoxue1WEN Daoyuan1ZHU Chao2LIU Tianchu1RU Guangxin1
(1.College of Forestry,Henan Agricultural University,Zhengzhou,Henan 450002;2.Xinyang Agricultural Foreign Investment Project Office,Xinyang,Henan 464000)
Keywords:
CdB.napus L.subcellular fractionchemical formsroot morphologyphysiological and biochemical characteristic
PACS:
-
DOI:
10.11937/bfyy.20193670
Abstract:
Brassica napus L. was used as the stress material and tested by hydroponic culture,four Cd levels (0,1,5,10 mg·L-1) were set.The effects of Cd stress on the morphology,physiological characteristics,subcellular Cd distribution and chemical forms of rapeseed were studied in order to provide reference for prevention of heavy metals in vegetables.The results showed that with the increase of Cd stress concentration,root activity,root length,root diameter,root surface area and volume of rapeseed increased first and then decreased,and proline content and MDA content in roots and leaves of rapeseed increased gradually,the activities of POD and CAT decreased gradually,and the activity of SOD increased first and then decreased,the content of chlorophyll showed a decreasing trend.The trend of Cd distribution in B.napus plant showed cytosol>cell organelle>cell wall.With the increase of Cd stress concentration,the Cd content of various subcellular components of B.napus plant increased.Compared with 1 mg·L-1,the proportion of cell wall and organelle Cd in roots and leaves of rapeseed increased under 5 mg·L-1 and 10 mg·L-1 treatment.The trend of Cd content in the chemical forms of rapeseed was FNaCl>FHAC>FH2O>Feth>FHCl>Fres,and its content increased with the increase of cadmium stress concentration.The highest proportion of sodium chloride extracted from rapeseed roots and leaves showed that the ratio of adsorbed Cd was high.

References:

[1]冯汉青,杜变变,王庆文,等.镉胁迫下活性炭对小麦幼根的保护作用[J].生态学报,2016,36(10):2962-2968.[2]VALKO M,MORRIS H,CRONIN M.Metals,toxicity and oxidative stress[J].Current Medicinal Chemistry,2005,12(10):1161-1208.[3]JOMOVA K,VALKO M.Advances in metal-induced oxidative stress and human disease[J].Toxicology,2011,283(2-3):65-87.[4]HONGBO G,NAN Z,DEYHOLOS M K,et al.Calcium mobilization in salicylic acid-induced salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid[J].Applied Biochemistry&Biotechnology,2015,175(5):2689-2702.[5]ARTHUR E,CREWS H,MORGAN C.Optimizing plant genetic strategies for minimizing environmental contamination in the food chain[J].International Journal of Phytoremediation,2000 2(1):21.[6]YUAN L,PERRY S E.Plant transcription factors[J].Methods in Molecular Biology,2011,754:3-18.[7]刘强,赵南明,YAMAGUCH-SHINOZAKI K,等.DREB 转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11-16.[8]邹琦.植物生理学试验指导[M].北京:中国农业出版社,2000.[9]朱广廉.植物游离脯氨酸的测定[J].植物生理学通讯,1983 (1):35-37.[10]XU Q,HUANG B.Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass[J].Crop Science,2004,44(2):553-560.[11]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.[12]张志良,瞿伟青.植物生理学试验指导[M].北京:高等教育出版社,2002.[13]赵亚华.生物化学试验技术教程[M].广州:中南大学技术出版社,2000.[14]QIN X,NIE Z,LIU H,et al.Influence of selenium on root morphology and photosynthetic characteristics of winter wheat under cadmium stress[J].Environmental & Experimental Botany,2018,150:232-239.[15]GEFFARD A,SARTELET H,GARRIC J,et al.Subcellular compartmentalization of cadmium,nickel,and lead in Gammarus fossarum:Comparison of methods[J].Chemosphere,2010,78(7):822-829.[16]邹金华,张忠贵,魏爱琪.毛葱的镉吸收积累及亚细胞分布特征[J].天津师范大学学报(自然科学版),2014,34(1):72-77.[17]FU X,DOU C,CHEN Y,et al.Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J].Journal of Hazardous Materials,2011,186(1):103-107.[18]翁锦周,林江波,林加耕,等.盐胁迫对桉树幼苗的生长及叶绿素含量的影响[J].热带作物学报,2007,28(4):15-20.[19]汪月霞,孙国荣,王建波,等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,2006,26(1):122-129.[20]史吉平,董永华.重金属胁迫对小麦幼苗超氧物歧化酶活性的影响[J].麦类作物报,1996(3):33-34.[21]郑爱珍,刘传平,沈振国.镉处理下青菜和白菜MDA含量、POD和SOD活性的变化[J].湖北农业科学,2005(1):67-69.[22]王凤德,衣艳君,王海庆,等.豌豆过氧化氢酶在烟草叶绿体中的过量表达提高了植物的抗逆性[J].生态学报,2009,31(4):1058-1063.[23]刘莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4(3):265-269.[24]LIANG P,ARTHU R B P.Differential display of eukaryoticm essenger RNA bymeans of the polymerase chain reaction[J].Science,1992,25:967-971.[25]LV L,HE C F,LIU J X,et al.The progress in research on the biological characteristics of Aloe[J].Chinese Agricultural Science Bulletin,2004,20(6):89-92.[26]苑丽霞,孙毅,杨艳君.镉胁迫对油菜生长发育中生理生化特性的影响[J].安徽农业科学,2014,42(9):2544-2547,2558.[27]孔维宝,陆健.制麦过程中过氧化物酶活性可能影响绿麦芽的生根和制卖损失[J].啤酒科技,2010(2):29-33.[28]王琳,岳晓翔,王宝山.不同生境下两种表现盐地碱蓬叶片 POD 比较研究[J].山东师范大学学报,2008,23(4):103-105.[29]刘清泉,陈亚华,沈振国,等.细胞壁在植物重金属耐性中的作用[J].植物生理学报,2014,50(5):605-611.[30]WENG B,XIE X,WEISS D J,et al.Kandelia obovata (S.L.) Yong tolerance mechanisms to Cadmium:Subcellular distribution,chemical forms and thiol pools[J].Marine Pollution Bulletin,2012,64(11):2453-2460.[31]SHARMA P,DUBEY R S.Lead toxicity in plants[J].Brazilian Journal of Plant Physiology,2005,17(1):35-52.[32]WU F B,DONG J,QIAN Q Q,et al.Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J].Chemosphere,2005,60(10):1440-1446.[33]WANG X,LIU Y,ZENG G,et al.Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud.[J].Environmental and Experimental Botany,2008,62(3):389-395.

Memo

Memo:
-
Last Update: 2020-07-24