[1]ABOGADALLAH G M.Antioxidative defense under salt stress[J].Plant Signal Behav,2011,5:369-374.[2]KAUSHAL S S.Increased salinity decreases safe drinking water[J].Environmental Science and Technology,2016,12(50):2765-2766.[3]EVANS M J,CHOI W G,GILROY S,et al.A ros-assisted calcium wave dependent on the atrbohd nadph oxidase and TPC1 cation channel propagates the systemic response to salt stress[J].Plant Physiology,2016,171(3):1771-1784.[4]刘云芬,王薇薇,郑佳秋,等.植物耐盐性生理与分子机制研究进展[J].江苏农业科学,2019,47(12):30-36.[5]束胜,郭世荣,孙锦,等.盐胁迫下植物光合作用的研究进展[J].中国蔬菜,2012,18(1):53-61.[6]ZHU J K.Plant salt tolerance[J].Trends in Plant Science,2001,6(2):66-71.[7]肖龙,罗鹏.诸葛菜的研究现状与开发前景[J].西北植物学报,1994,14(3):237-241.[8]COHEN Y,VAKNIN M,MAUCH-MANI B.BABA-induced resisance:Milestones along a 55-year journey[J].Phytoparasitica,2016,44(4):513-538.[9]JAKAB G,COTTIER V,TOQUIN V,et al.β-Aminobutyric acid-induced resistance in plants[J].European Journal of Plant Pathology,2001,107(1):29-37.[10]HUANG T,JANDER G,VOS M D.Non-protein amino acids in plant defense against insect herbivores:Representative cases and opportunities for further functional analysis[J].Phytochemistry,2011,72(13):1531-1537.[11]BALMER A,PASTOR V,GAMIR J,et al.The‘prime-ome’:Towards a holistic approach to priming[J].Trends Plant Sci,2015,20:443-452.[12]JAKAB G,TON J,FLORS V,et al.Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses[J].Plant Physiol,2005,139(1):267-274.[13]CAO S,JIANG L,YUAN H,et al.β-Aminobutyric acid protects Arabidopsis against low potassium stress[J].Acta Physiologiae Plantarum,2007,30(3):309-314.[14]MARTNEZ-AGUILAR K,RAMREZ-CARRASCO G,HERNNDEZ-CHVEZ J L,et al.Use of BABA and INA as activators of a primed state in the common bean (Phaseolus vulgaris L.)[J].Frontiers in Plant Science,2016,7(653):1-17.[15]BENGTSSON T,WEIGHILL D,PROUX-WERA E,et al.Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach[J].BMC Genomics,2014,15(1):315.[16]WORRALL D,HOLROYD G H,MOORE J P,et al.Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens[J].New Phytologist,2012,193(3):770-778.[17]DUBREUIL-MAURIZI C,TROUVELOT S,FRETTINGER P,et al.β-Aminobutyric acid primes an NADPH oxidase-dependent reactive oxygen species production during grapevine-triggered immunity[J].Mol Plant Microbe Interact,2010,23(8):1012-1021.[18]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002.[19]李合生.植物生理实验原理和技术[M].北京:高等教育出版社,2000.[20]LI Y.Physiological responses of tomato seedlings(Lycopersicon esculentum) to salt stress[J].Modern Applied Science,2009,3(3):171-176.[21]张清莉,刘再强,钟玉德,等.BABA诱导烟草抵御高盐胁迫的初步研究[J].中国烟草学报,2015,21(3):72-81.[22]何永明,谢建春,李春晓.β-氨基丁酸增强水稻幼苗耐盐性的初步研究[J].安徽农业科学,2010,38(2):641-642.[23]ASHRAF M A,ASHRAF M,ALI Q.Response of two genetically diverse wheat cultivars to salt stress at different growth stages:Leaf lipid peroxidation and phenolic contents[J].Pak J Bot,2010,42(1):559-565.[24]TRINCHANT J C,BOSCARI A,SPENNATO.Proline betaine accumulation and metabolism in Alfalfa plants under sodium chloride stress.Exploring its compartmentalization in nodules[J].Plant Physiology,2004,135(3):1583-1594.[25]LIU J,ZHU J K.Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis[J].Plant Physiology,1997,114:591-596.[26]孙德智,杨恒山,张庆国,等.外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用[J].浙江农业学报,2019,31(8):1287-1296.[27]徐倩,李华雄,鲜小林,等.β-氨基丁酸对NaHCO3胁迫下杜鹃光合特性和抗氧化系统的影响[J].林业科学研究,2018,31(2):133-140.[28]MOSTEK A,BO¨RNER A,WEIDNER S.Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley[J].Plant Physiology & Biochemistry Ppb,2016,99:150.[29]王玥琳,徐大平,杨曾奖,等.移植和钾肥对降香黄檀光合特性与叶绿素含量的影响[J].植物科学学报,2018,36(6):109-117.[30]牛锐敏,许泽华,沈甜,等.盐胁迫对葡萄砧木生长和叶绿素荧光特性的影响[J].北方园艺,2018(21):91-95.[31]杨俊鸾.NaCl胁迫对银杏叶绿素和保护酶活性的影响[J].山东林业科技,2019(3):49-52.[32]施旭丽,陈发棣,房伟民,等.β-氨基丁酸对Cd胁迫下菊花生理特性的影响[J].园艺学报,2015,42(12):2429-2438.