|Table of Contents|

High Light Response of PSⅡ in Seedling and Sapling Leaves of Taxus cuspidata

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年06
Page:
63-69
Research Field:
Publishing date:

Info

Title:
High Light Response of PSⅡ in Seedling and Sapling Leaves of Taxus cuspidata
Author(s):
LI Wei1WANG Tao1FANG Yujiao2WU Yue3LIU Xinmeng3WANG Zhiguo3
(1.College of Resources and Environment,Northeast Agricultural University,Harbin,Heilongjiang 150030;2.College of Life Science,Northeast Agricultural University,Harbin,Heilongjiang 150030;3.College of Agriculture,Northeast Agricultural Unirersity,Harbin,Heilongjiang 150030)
Keywords:
Taxus cuspidatahigh lightchlorophyll fluorescence
PACS:
-
DOI:
10.11937/bfyy.20191808
Abstract:
4-year-old seedlings and 15-year-old saplings of Taxus cuspidate were used as test materials.By measuring chlorophyll fluorescence kinetics and comparing photosynthetic response of PSⅡ in seedling and sapling leaves of Taxus cuspidate after high light stress,the physiological and functional changes of PSⅡ in seedling and sapling leaves of Taxus cuspidata were analyzed after removing shade.It revealed the responses of seedling and sapling leaves of Taxus cuspidata to high light and provided a theoretical basis for the light regulation in artificial cultivation of Taxus cuspidate.The results showed that high light stress caused decrease in Fv/Fm of seedlings and saplings of Taxus cuspidata,which indicated that photoinhibition occurred.But the degree of photoinhibition on sapling leaves was less than that on seedling leaves.The increases of VJ in seedlings and saplings of Taxus cuspidata indicated that acceptor sides of PSⅡ were damaged by high light stress and the capacity of PQ have been changed.The Ψo and ETo/RC in seedlings and saplings of Taxus cuspidata decreased.On the other hand,φDo and DIo/RC in seedlings and saplings of Taxus cuspidata increased,which showed that leaves could protect photosynthetic apparatus by increasing thermal dissipation under high light.After high light stress,the leaves of sapling had more energy for electron transfer in PSⅡ and less energy for dissipation than seedling leaves,and photosynthetic activity per reaction center of sapling leaves were damaged less than seedling leaves.In conclusion,high light could damage PSⅡ in seedling and sapling leaves of Taxus cuspidata after removing shade.However,light resistance of sapling was significantly higher than that of seedlings.Shade and shelter for the artificial cultivation of Taxus cuspidata seedling should deserve attention.

References:

[1]刘彤,胡林林,郑红,等.天然东北红豆杉土壤种子库研究[J].生态学报,2009,29(4):1869-1876.[2]周志强,刘彤,李云灵.立地条件差异对天然东北红豆杉(Taxus cuspidata)种间竞争的影响[J].生态学报,2007(6):2223-2229.[3]LIU T,ZHOU Z.Characteristics of natural Japanese yew population in muling nature reserve of Heilongjiang Province,China[J].Journal of Forestry Research,2006,17(2):132-134.[4]WANI M C,TAYLOR H L,WALL M E,et al.Plant antitumor agents.VI.isolation and structure of taxol,a novel antileukemic and antitumor agent from Taxus brevifolia[J].Journal of the American Chemical Society,1971,93(9):2325-2327.[5]王欢,张莉,李齐光,等.山东红豆杉(Taxus media)生物学特点及其理化性质研究[J].人参研究,2019,31(4):31-35.[6]KOBAYASHI J,OGIWARA A,HOSOYAMA H,et al.Taxuspines A~C,new taxoids from Japanese yew Taxus cuspidata inhibiting drug transport activity of p-glycoprotein in multidrug-resistant cells[J].Tetrahedron,1994,50(25):7401-7416.[7]王玉震.我国天然红豆杉资源濒危因子分析及其保护途径探讨[J].国土与自然资源研究,2008(4):90-91.[8]彭少麟,王昌伟,李鸣光,等.影响红豆杉生长的主要生态因子[J].中山大学学报(自然科学版),2006(3):65-69.[9]BALLERO M,LOI M C,van ROZENDAAL E L M,et al.Analysis of pharmaceutically relevant taxoids in wild yew trees from Sardinia[J].Fitoterapia,2003,74(1-2):34-39.[10]ANDREW C M.The encyclopedia of medicinal plants[M].Dorling:Kindersley Limited Publishing House,1996:273.[11]DIFAZIO S P,VANCE N C,WILSON M V.Strobilus production and growth of pacific yew under a range of over story conditions in western Oregon[J].Canadian Journal of Forest Research,1997,27(7):986-993.[12]孙立平,于淑香,王跃.东北红豆杉生长及营林技术的研究[J].农民致富之友,2018(13):187.[13]杨兴洪,邹琦,赵世杰.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征[J].植物生态学报,2005(1):8-15.[14]郭峰,田纪春,孟庆伟,等.遮阴后不同小麦品种(系)旗叶光系统Ⅱ(PSⅡ)对强光的响应[J].山东农业科学,2008(8):40-43.[15]李威,杨德光,牟尧,等.去遮荫后东北红豆杉幼苗和幼树光合特性对比[J].林业科学,2018,54(2):179-185.[16]张子山,张立涛,高辉远,等.不同光强与低温交叉胁迫下黄瓜PSⅠ与PSⅡ的光抑制研究[J].中国农业科学,2009,42(12):4288-4293.[17]孙铭隆,李威,刘彤,等.3种红豆杉光合特性及叶绿素荧光差异比较[J].经济林研究,2011,29(1):27-33.[18]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992(1):1-16.[19]STRASSERF R J,SRIVASTAVA A.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J].Photochemistry and Photobiology,1995,61(1):32-42.[20]ARO E M,VIRGIN I,ANDERSSON B.Photoinhibition of photosystem II.Inactivation,protein damage and turnover[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,1993,1143(2):113-134.[21]姜闯道,高辉远,邹琦,等.叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制[J].生态学报,2005(2):319-325.[22]MGUEZ F,FERNNDEZ-MARN B,BECERRIL J M,et al.Activation of photoprotective winter photoinhibition in plants from different environments:A literature compilation and meta-analysis[J].Physiologia Plantarum,2015,155(4):414-423.[23]杨雄,刘乐平,李兴山,等.哈茨木霉对湿地松幼苗光合作用和生物量累积的影响[J].湖北林业科技,2018,47(6):27-30.[24]李鹏民.快速叶绿素荧光诱导动力学在植物逆境生理研究中的应用[D].泰安:山东农业大学,2007.[25]李鹏民,高辉远,RETO J S.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005(6):559-566.[26]张会慧,张秀丽,许楠,等.外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响[J].应用生态学报,2011,22(5):1195-1200.[27]曹慧,王孝威,邹岩梅,等.外源NO对干旱胁迫下平邑甜茶幼苗叶绿素荧光参数和光合速率的影响[J].园艺学报,2011,38(4):613-620.[28]HORTON P,RUBAN A V,WALTERS R G.Regulation of light harvesting in green plants (indication by nonphotochemical quenching of chlorophyll fluorescence)[J].Plant Physiology,1994,106(2):415.[29]刘彤,崔海娇,吴淑杰,等.东北红豆杉幼苗光合和荧光特性对不同光照条件的响应[J].北京林业大学学报,2013,35(3):65-70.[30]邱翠花,计玮玮,郭延平.高温强光对温州蜜柑叶绿素荧光、D1蛋白和Deg1蛋白酶的影响及SA效应[J].生态学报,2011,31(13):3802-3810.[31]孙永江.葡萄光系统Ⅱ及光合碳同化对高温强光的响应机理[D].泰安:山东农业大学,2016.

Memo

Memo:
-
Last Update: 2020-05-24