|Table of Contents|

Temporal and Spatial Dynamics of Desertified Land in MU Us Sandy Land

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年21
Page:
79-88
Research Field:
Publishing date:

Info

Title:
Temporal and Spatial Dynamics of Desertified Land in MU Us Sandy Land
Author(s):
JIA GuangpuZUO HejunHAN XueyingWANG NingLIU Feng
(College of Desert Control Science,Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010011)
Keywords:
Mu Us Sandy Landdesertified landspatial autocorrelationMoran′s I
PACS:
-
DOI:
10.11937/bfyy.20190774
Abstract:
Taking remote sensing images of 1990,2000,2010 and 2016 as data sources,the temporal and spatial dynamic process and distribution of Sandy Land in Mu Us Sandy Land in recent 30 years were studied through the annual conversion of sandy land area in different periods,sandy land of different degrees and global autocorrelation index Moran′s I,local Moran scatter plot and LISA distribution map.In order to provide the basis for desertification control.The following conclusions were obtained,1) In recent 30 years,the development of sandy land in Mu Us Sandy Land had taken 2000 as the cutoff point,showing a development trend before 2000 and a reversal trend after 2000.2) Moran′s I index of different types of desertified land was positive,showing a positive spatial correlation.The distribution of desertification types had a certain spatial correlation.The mobile sands in Mu Us Sandy Land were mainly concentrated in Uxin Qi,Otog Front Banner and Etuoke Banner.Semi-fixed Sandy Land was mainly concentrated in the northeast of Mu Us sandy land in Shenmu county and Yuyang District.Fixed sandy land was mainly distributed in marginal areas such as Shenmu county.Saline-alkali land was mainly concentrated in Shenmu county.In the future,when making and planning the use of desertified land,reference can be made to the distribution areas of desertified land types so as to formulate corresponding policies and plans to improve the efficiency of desertification control.

References:

[1]任小玢,胡光印,董治宝.沙漠化脆弱性的概念与评价[J].中国沙漠,2015,35(1):40-50.[2]夏晨曦.吉林省西部土地沙漠化动态遥感分析[D].长春:吉林大学,2017.[3]吴波,慈龙骏.毛乌素沙地景观格局变化研究[J].生态学报,2001,21,9(2):191-196.[4]秦艳,胡永宁.毛乌素沙地乌审旗境内NDVI与环境因子的尺度响应[M].北京:中国农业科学技术出版社,2016.[5]张文彬.内蒙古自治区伊克昭盟毛乌素沙地农牧业资源调查及区划[M].呼和浩特:内蒙古人民出版社,1989.[6]北京大学地理系.毛乌素沙区自然条件及其改良利用[M].北京:科学出版社,1983.[7]吴薇,王熙章,姚发芬.毛乌素沙地沙漠化的遥感监测[J].中国沙漠,1997,17(4):415-420.[8]郭丽英,刘彦随,任志远.生态脆弱区土地利用格局变化及其驱动机制分析-以陕西榆林市为例[J].资源科学,2005,27(2):128-133.[9]杨思全,王薇.毛乌素沙地沙漠化评价[J].干旱区地理,2010,33(2):258-262.[10]郭坚,王涛,韩邦帅,等.近30a来毛乌素沙地及其周边地区沙漠化动态变化过程研究[J].中国沙漠,2008,28(6):1017-1021.[11]吴晓旭,邹学勇.基于遥感与GIS的乌审旗土地利用变化研究[J].地理科学进展,2009,28(2):199-206.[12]韩雪莹,杨光,秦富仓,等.毛乌素沙地近30年沙漠化土地时空动态演变格局[J].水土保持研究,2019,26(5):144-150,157.[13]王曼曼,吴秀芹,吴斌,等.近25a盐池北部风沙区土地系统变化及空间集聚格局分析[J].农业工程学报,2014,30(21):256-267.[14]冯坤,颜长珍,谢家丽,等.1975—2015年鄂尔多斯市沙漠化的时空演变过程[J].中国沙漠,2018,38(2):233-242.[15]马燕飞,沙占江,牛志宁,等.环青海湖区沙漠化土地景观格局自相关分析[J].干旱区研究,2010,27(6):954-961.[16]OVERMARS K P,de KOING G H,VELDKAMP J A.Spatial autocorrelation in multi-scale land use models[J].Ecological Modeling,2003,16(4):257-270.[17]李松,张凌云,刘洋,等.新疆主要民族空间分布格局演变-基于1982—2010年人口普查数据[J].人口研究,2015,39(4):78-86.[18]刘敏,赵翠薇,施明辉.贵州山区土地利用变化多尺度空间自相关分析[J].农业工程学报,2012,28(20):239-246,300.[19]谷建立,张海涛,陈家赢,等.基于DEM的县域9土地利用空间自相关格局分析[J].农业工程学报,2012,28(23):216-224.[20]郭紫晨,刘树林,康文平,等.2000—2015年毛乌素沙区植被覆盖度变化趋势[J].中国沙漠,2018,38(5):1099-1107.[21]张文帅.陕甘宁黄土高原区NDVI变化及其在土地利用变化检测中的适宜性[D].北京:中国科学院研究生院,2014.[22]王志波,高志海,王琫瑜,等.基于面向对象方法的沙化土地遥感信息提取技术研究[J].遥感技术与应用,2012,27(5):770-777.[23]张玉娟,曲建光,王强,等.结合均匀度理论和Moran′s I指数、广义G指数的景观格局全局自相关分析[J].测绘通报,2018(11):36-39.[24]宋文,陈英.土地利用空间自相关分析中观测变量和衡量指标的选择研究[J].干旱区资源与环境,2015,29(10):37-42.[25]曾豪.土地利用格局及其空间自相关动态变化分析[D].成都:成都理工大学,2017.[26]段翰晨,王涛,薛娴,等.基于GS与GIS的科尔沁沙地沙漠化时空演变[J].中国沙漠,2013,33(2):470-477.[27]闫峰,吴波.近40年毛乌素沙地荒漠化过程研究[J].干旱区地理,2013,36(6):987-996.[28]刘娟,刘华民,卓义,等.毛乌素沙地1990—2014年景观格局变化及驱动力[J].草业科学,2017,34(2):255-263.

Memo

Memo:
-
Last Update: 2019-12-06