|Table of Contents|

Differences in Functional Characters of Paeonia decomposita From Different Provenances and Their Relationships With Environmental Factors

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年21
Page:
48-55
Research Field:
Publishing date:

Info

Title:
Differences in Functional Characters of Paeonia decomposita From Different Provenances and Their Relationships With Environmental Factors
Author(s):
TAN Liping1ZENG Wanqing1LIU Xian′an2ZHOU Xiaohui1YANG Xing2PENG Peihao1
(1.Academy of Tourism and Urban-Rural Planning,Chengdu University of Technology,Chengdu,Sichuan 610059;2.Academy of Earth Sciences,Chengdu University of Technology,Chengdu,Sichuan 610059)
Keywords:
functional charactersenvironmental factorsprovenancePaeonia decomposita
PACS:
-
DOI:
10.11937/bfyy.20190704
Abstract:
For its high ornamental and medicinal value and developed potential,Paeonia decomposita is scarce and is now in an endangered state.In this study,ten wild populations of Paeonia decomposita were selected as the research object.The functional characters of Paeonia decomposita from different provenances and their relationship with environmental factors were studied by one-way analysis of variance,correlation analysis and regression analysis.One-way analysis of variance showed that the average coefficient of variation of functional characters of Paeonia decomposita in different provenances ranged from 11.27% to 38.37%,and the average variation coefficient of leaf area and leaf dry weight was large,indicating that the characters were unstable.The stem diameter,plant height,chlorophyll content,leaf nitrogen content,specific leaf area,leaf dry weight and leaf area of Paeonia decomposita were significantly different (P<0.05),reflecting the strong adaptability of Paeonia decomposita to the environment.Preason correlation analysis showed that the functional characters of Paeonia decomposita were mainly affected by latitude,soil total nitrogen content and soil available phosphorus content,and the stem diameter was significantly positively correlate there was a linear relationship between the stem diameter and soil total nitrogen content (Y=6.366+1.902X,R2=0.507,P=0.021),the specific leaf area and soil available phosphorus content (Y=79.300+5 563.823X,R2=0.571,P=0.011),and the leaf area and latitude (Y=1 452.767-42.535X,R2=0.488,P=0.025).It is concluded that the Paeonia decomposita has strong adaptability to the environment,and the functional characters are significantly different among different provenances.The stem diameter of Paeonia decomposita increases with the increase of soil total nitrogen content,and the specific leaf area increases with the increase of soil available phosphorus content,and the leaf area decreased with the increase of latitude.

References:

[1]LO NIINEMETS.Global-scale climatic controls of leaf dry mass per area,density,and thickness in trees and shrubs[J].Ecology,2001,82(2):453-469.[2]黄端,王冬梅,任远,等.漓江水陆交错带植物叶性状对水淹胁迫的响应及经济谱分析[J].生态学报,2017,37(3):750-759.[3]SANDRA D,MARCELO C.Vive la difference:Plant functional diversity matters to ecosystem processes[J].Trends in Ecology and Evolution,2001,16(11):646-655.[4]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007(1):150-165.[5]REICH P B,OLEKSYN J.Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proc Natl Acad Sci USA,2004,101:11001-11006.[6]WRIGHT I J,REICH P B,WESTOBY M.Strategy shifts in leaf physiology,structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J].Funct Ecol,2001,15:423-434.[7]许洺山,黄海侠,史青茹,等.浙东常绿阔叶林植物功能性状对土壤含水量变化的响应[J].植物生态学报,2015,39(9):857-866.[8]CRAINE J M,LEE W G.Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand[J].Oecologia,2003,134:471-478.[9]刘晓娟,马克平.植物功能性状研究进展[J].中国科学(生命科学),2015,45(4):325-339.[10]傅立国.中国植物红皮书:稀有濒危植物第一册[M].北京:科学出版社,1999.[11]洪德元,潘开玉.芍药属牡丹组的分类历史和分类处理[J].植物分类学报,1999(4):48-65.[12]周晓慧,王娟,刘贤安,等.四川牡丹种实性状与环境因子的关系[J].东北林业大学学报,2018,46(9):41-45,58.[13]景新明,郑光华,裴颜龙,等.野生紫斑牡丹和四川牡丹种子萌发特性及与其致濒的关系[J].生物多样性,1995(2):84-87.[14]JING X,ZHENG G.The characteristics in seed germination and dormancy of four wild species of tree peonies and their bearing on endangerment[J].Acta Photophysiologica Sinica,1999,25(3):214-221.[15]冯正波.四川牡丹种子育苗[J].植物杂志,2002(2):37.[16]王士泉,张大明.四川牡丹和块根芍药第五号染色体异常的减数分裂证据[J].植物分类学报,2008(2):155-162.[17]宋会兴,刘光立,高素萍,等.四川牡丹种子浸提液内源抑制物活性初探[J].园艺学报,2012,39(2):370-374.[18]汪源,刘光立,张倩,等.层积处理对四川牡丹种子生理生化特性的影响[J].北方园艺,2013(24):59-62.[19]杨勇,刘光立,宋会兴,等.四川牡丹胚乳浸提液对油菜种子萌发与幼苗生长的影响[J].西南农业学报,2013,26(1):89-92.[20]杨勇,刘佳坤,曾秀丽,等.四川牡丹部分野生居群种子脂肪酸组分比较[J].园艺学报,2015,42(9):1807-1814.[21]周晓慧,陈圣宾,夏小梅,等.基质和赤霉素对珍稀濒危植物四川牡丹种子萌发的影响[J].北方园艺,2018(8):106-113.[22]JI L J,WANG Q,TEIXEIRA D S,et al.The genetic diversity of Paeonia L.[J].Scientia Horticulturae,2012,143(1):62-74.[23]童芬,谢登峰,曾心美,等.四川牡丹和圆裂四川牡丹遗传多样性的ISSR分析[J].西北植物学报,2016,36(10):1968-1976.[24]杨勇,骆劲涛,张必芳,等.四川牡丹的花部特征和繁育系统研究[J].植物资源与环境学报,2015,24(4):97-104.[25]于玲,何丽霞,李嘉珏,等.牡丹野生种间蛋白质谱带的比较研究[J].园艺学报,1998(1):100-102.[26]林启冰,周志钦,赵宣,等.基于Adh基因家族序列的牡丹组(Sect.Moutan DC.)种间关系[J].园艺学报,2004(5):627-632.[27]洪德元,周世良,何兴金,等.野生牡丹的生存状况和保护[J].生物多样性,2017,25(7):781-793.[28]骆劲涛.四川牡丹的传粉生物学研究[D].雅安:四川农业大学,2013.[29]夏小梅,王娟,彭培好,等.四川牡丹生境群落的数量分类与排序[J].东北林业大学学报,2017,45(1):37-40.[30]夏小梅.珍稀濒危植物四川牡丹保护生物学研究[D].成都:成都理工大学,2017.[31]谢学强.干旱河谷不同立地条件对引种湿热型植物的影响[J].贵州农业科学,2011,39(12):202-204,207.[32]夏小梅,王娟,彭培好,等.大渡河干旱河谷四川牡丹种群结构特征及与环境因子的关系[J].浙江林业科技,2017,37(2):30-35.[33]何建社,张利,刘千里,等.岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应[J].生态学报,2018,38(7):2362-2371.[34]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.[35]张芳芳,赵立伟,苏亚勋,等.天津盐碱地上7种花灌木引种初步研究[J].天津农业科学,2017,23(6):110-112.[36]安海龙,谢乾瑾,刘超,等.水分胁迫和种源对黄柳叶功能性状的影响[J].林业科学,2015,51(10):75-84.[37]苏文华,施展,杨波,等.滇石栎沿纬度梯度叶片功能性状的种内变化[J].植物分类与资源学报,2015,37(3):309-317.[38]苏泽春,赵菊,李兆光,等.滇西北野生牡丹天然居群的表型多样性[J].中国农学通报,2018,34(7):65-71.[39]成仿云,李嘉珏,陈德忠.中国野生牡丹自然繁殖特性研究[J].园艺学报,1997(2):77-81.[40]吴统贵,曾广泉,肖杨根,等.湿地松林下6树种光合日变化及其与环境因子的关系[J].南京林业大学学报(自然科学版),2011,35(5):135-138.[41]王晶媛,张慧,虞木奎,等.区域尺度上麻栎叶片性状对环境因子的响应规律[J].生态环境学报,2017,26(5):754-762.[42]张慧文,马剑英,孙伟,等.不同海拔天山云杉叶功能性状及其与土壤因子的关系[J].生态学报,2010,30(21):5747-5758.[43]EVANS J R.Photosynthesis and nitrogen relationships in leaves of C3 plants[J].Oecologia,1989,78(1):9-19.[44]肖迪,王晓洁,张凯,等.氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J].植物生态学报,2016,40(7):686-701.[45]李红心.叶片氮素含量对水曲柳幼苗光合作用的影响[D].哈尔滨:东北林业大学,2003.[46]AERTS R,CHAPIN F S.The mineral nutrition of wild plants revisited:A re-evaluation of processes and patterns[J].Adv Ecol Res,2000,30:61-67.[47]MATTOS D,GRAETZ D A,ALVA A K.Biomass distribution and nitrogen15 partitioning in citrus trees on a sandy entisol[J].Soilence Society of America Journal,2003,67(2):555-563.[48]陆景陵.植物营养学[M].2版.北京:中国农业大学出版社,2003.[49]GARNIER L E,LAURENT L G,BELLMANN A,et al.Consistency of species ranking based on functional leaf traits[J].New Phytologist,2001,152(1):69-83.[50]ORDONEZ J C,VAN BODEGOM P M,WITTE J M,et al.A global study of relationships between leaf traits,climate and soil measures of nutrient fertility[J].Global Ecology & Biogeography,2010,18(2):137-149.[51]温家豪,孙宁骁,陶慧敏,等.亚热带富磷和贫磷立地植物叶片形态的适应性特点[J].上海交通大学学报(农业科学版),2018,36(4):22-29.

Memo

Memo:
-
Last Update: 2019-12-06