|Table of Contents|

Growth and Physiological Responses of Perennial Ryegrass toElectrolytic Manganese Residue Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年17
Page:
72-76
Research Field:
Publishing date:

Info

Title:
Growth and Physiological Responses of Perennial Ryegrass toElectrolytic Manganese Residue Stress
Author(s):
WANG Jiazhen1HU Wanming2LI Dayong2YAO Shuiqing1SHI Xiongwen1
(1.School of Biology and Agriculture Science and Technology,Zunyi Normal University,Zunyi,Guizhou 563000;2.Geological and Mineral Resources Center Laboratory of Guizhou,Guiyang,Guizhou 550018)
Keywords:
perennial ryegrasselectrolytic manganese residuephotosynthetic pigmentsoluble sugarproline
PACS:
-
DOI:
10.11937/bfyy.20190434
Abstract:
Taking perennial ryegrass as test photosynthetic materials,the effects of 3%,6% and 9% electrolytic manganese residue solution on plant height,pigments,soluble sugar and proline content of perennial ryegrass were studied by continuous irrigation method in order to provide theoretical reference for remediation of electrolytic manganese residue contaminated sites.The results showed that the inhibition of 3% electrolytic manganese slag solution on ryegrass growth was not obvious,while 6% and 9% electrolytic manganese slag solution had significant inhibition on ryegrass growth.After 12 days of treatment with 6% and 9% electrolytic manganese slag solution,the total chlorophyll content decreased by 47.5% and 70.87% respectively,and the carotenoid content decreased by 77.80% and 83.90% compared with the control.Perennial ryegrass has a certain tolerance to 3% electrolytic manganese slag,and has the potential of remediation of manganese slag contaminated areas.

References:

[1]陆凤,陈淼,陈兰兰.贵州松桃某电解锰企业锰渣重金属污染特征及对植物生长的毒性效应[J].科学技术与工程,2018,18(5):124-129.[2]BILINSKI H,KWOKAL Z,BRANICA M.Formation of some manganese minerals from ferromanganese factory waste disposed in the Krka River Estuary[J].Water Res,1996,30(3):495-500.[3]MOHAN S,GANDHIMATHI R.Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent[J].J Hazardous Materials,2009,169:351-359.[4]王加真,胡万明,彭昌娟,等.香根草在电解锰渣液中的生长策略研究简报[J].中国园艺文摘,2017,33(10):4-5,188.[5]朱阳春,张振华,钟小仙,等.牧草修复重金属污染土壤的研究进展[J].江苏农业科学,2018,46(4):1-6.[6]陈进.利用花卉植物修复土壤的研究现状及趋势[J].南方农业,2017,11(20):41-42.[7]陈远其,陈章,李志贤,等.锰污染土壤修复研究现状与展望[J].生态环境学报,2017,26(8):1451-1456.[8]李金波,李诗刚,宋桂龙,等.两种黑麦草砷吸收特征及其与茎叶营养元素积累的关系研究[J].草业学报,2018,27(2):79-87.[9]刘俊祥,魏树强,翟飞飞,等.Cd2+胁迫下多年生黑麦草的生长与生理响应[J].核农学报,2015,29(3):587-594.[10]朱剑飞,李铭红,谢佩君,等.紫花苜蓿、黑麦草和狼尾草对Cu、Pb复合污染土壤修复能力的研究[J].中国生态农业学报,2018,26(2):303-313.[11]王积伟,周长波,杜兵,等.电解锰渣无害化处理技术[J].环境工程学报,2014,1(4):329-333.[12]陈永欣,唐梦奇,黎香荣,等.X射线荧光光谱法同时测定富锰渣中主次组分[J].中国无机分析化学,2012,2(4):39-42,46.[13]ARNON D I.Copper enzymes in isolated chloroplasts,polyphenoloxidase in Beta vulgaris[J].Plant Physiology,1949,24(1):1-15.[14]谭建宁,杜成智,梁臣艳,等.龙脷叶总游离氨基酸含量测定[J].南方农业学报,2016,47(4):645-649.[15]刘海英,王华华,崔长海,等.可溶性糖含量测定(蒽酮法)实验的改进[J].实验室科学,2013,16(2):19-20.[16]JIAO L,WANG L,QIU Z,et al.Effects of bisphenol A on chlorophyll synthesis in soybean seedlings[J].Environmental Science & Pollution Research International,2015,22:5877-5886.[17]廖洁,何洁,莫磊兴,等.镉胁迫对甘蔗体内镉及游离氨基酸含量的影响[J].西南农业学报,2018,31(2):296-299.[18]陈伟,张苗苗,宋阳阳,等.重金属胁迫对4种草坪草种子萌发的影响[J].草地学报,2013,21(3):556-563.[19]ABF ALLAH E F,HASHEM A,ALQARAWI A,et al.Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.)[J].Journal of Plant Interactions,2017,12(1):237-243.[20]孟自力,贾斌,尹海燕,等.镉胁迫对小麦生长发育的影响[J].中国农学通报,2018,34(23):26-32.[21]van ASSCHE F,CSIJSTER H.Effects of metal on enzyme activity in plants[J].Plant Cell and Environment,1990,13(3):195-206.

Memo

Memo:
-
Last Update: 2019-09-24