|Table of Contents|

Spatial Temporal Distribution and Prediction Model of Canopy Temperature and Humidity in Greenhouse

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年17
Page:
56-65
Research Field:
Publishing date:

Info

Title:
Spatial Temporal Distribution and Prediction Model of Canopy Temperature and Humidity in Greenhouse
Author(s):
LIU QiTANAJIAO WeiKANG HongyuanZHAO Zhiyong
(College of Mechanical and Electrical Engineering,Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010011)
Keywords:
crop canopytemperature and humiditydistributionprediction model
PACS:
-
DOI:
10.11937/bfyy.20190126
Abstract:
In order to study the distribution and change situation of temperature and humidity inside the canopy area of solar greenhouse.Taking celery canopy of heat preservation solar greenhouse in Hohhot,Inner Mongolia as the research object,temperature and humidity distribution of celery canopy was measured and observed by means of sensor dense distribution.According to the similar rule of temperature and humidity in different positions of greenhouse canopy in solar greenhouse,prediction of temperature and humidity in different positions of crop canopy using Elman neural network.The results showed that the vertical temperature and humidity difference of crop canopy can reach 10.24 ℃,12.97%.During the period of illumination (curtain opening),the distribution of temperature from top to bottom,humidity from low to high,and in the period of no illumination (curtain closing) was basically opposite.The optimized Elman neural network could predict the temperature and humidity of crop canopy accurately.The model could predict the temperature and humidity of crop canopy in the coming week under the condition that the root mean square error of temperature and humidity were less than 0.8 and 1.5 respectively.This study has guiding significance for monitoring and controlling the temperature and humidity of crops canopy in solar greenhouse.

References:

[1]王军伟.苏北地区日光温室构型优化、室内温湿度分析及应用效果初探[D].南京:南京农业大学,2015.[2]王克安,李絮花,吕晓惠,等.不同结构日光温室温湿度变化规律及其对番茄产量和病害的影响[J].山东农业科学,2011(3):33-36.[3]左志宇,毛罕平,张晓东,等.基于时序分析法的温室温度预测模型[J].农业机械学报,2010,41(11):173-177.[4]许童羽,王泷,张晓博,等.RBF神经网络在北方日光温室湿度模拟预测中的应用[J].沈阳农业大学学报,2014,45(6):726-730.[5]任守纲,杨薇,王浩云,等.基于CFD的温室气温时空变化预测模型及通风调控措施[J].农业工程学报,2015,31(13):207-214.[6]邹伟东,张百海,姚分喜,等.基于改进型极限学习机的日光温室温湿度预测与验证[J].农业工程学报,2015,31(24):194-200.[7]秦琳琳,马国旗,储著东,等.基于灰色预测模型的温室温湿度系统建模与控制[J].农业工程学报,2016,32(z1):233-241.[8]王会林,卢涛,姜培学.生物多孔介质热风干燥数学模型及数值模拟[J].农业工程学报,2014,30(20):325-333.[9]BARTZANAS T,TCHAMITCHIAN M,KITTAS C.Influence of the heating method on greenhouse microclimate and energy consumption[J].Biosystems Engineering,2005,91(4):487-499.[10]五十六.日光温室内水热耦合环境的试验研究与数值模拟[D].呼和浩特:内蒙古农业大学,2015.[11]NEBBALI R,ROY J C,BOULARD T.Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse[J].Renewable Energy,2012,43:111-129.[12]程秀花,毛罕平,倪军,等.温室环境-作物湿热系统CFD模型构建与预测[J].农业机械学报,2011,42(2):173-179.[13]石黄霞,何颖,董晓红.基于Elman神经网络的电力负荷预测模型研究[J].工业仪表与自动化装置,2013(1):85-87.[14]张健美,周步祥,林楠,等.灰色Elman神经网络的电网中长期负荷预测[J].电力系统及其自动化学报,2013,25(4):145-149.[15]尤马彦,凌捷,郝彦军.基于Elman神经网络的网络安全态势预测方法[J].计算机科学,2012,39(16):61-63.[16]刘晓蕊,朱山川,刘杰才,等.新型内保温日光温室光照和温湿度性能的初步研究[J].农业工程技术(温室园艺),2014(4):64-66.[17]丁硕,常晓恒,巫庆辉,等.基于Elman神经网络的传感器故障诊断研究[J].国外电子测量技术,2014,33(4):72-75.[18]张靠社,杨剑.基于Elman神经网络的短期风电功率预测[J].电网与清洁能源,2012,28(12):87-91.[19]李宁,申双和,黎贞发,等.基于主成分回归的日光温室内低温预测模型[J].中国农业气象,2013,34(3):306-311.[20]何芬,马承伟.温室湿度环境的主成分分析人工神经网络建模研究[J].上海交通大学学报(农业科学版),2008(5):428-443.

Memo

Memo:
-
Last Update: 2019-09-24