[1]赵春江,杨信廷,李斌,等.中国农业信息技术发展回顾及展望[J].中国农业文摘-农业工程,2018,30(4):3-7.[2]胡静涛,高雷,白晓平,等.农业机械自动导航技术研究进展[J].农业工程学报,2015,31(10):1-10.[3]ARAUS J L,CAIRNS J E.Field high-throughput phenotyping:The new crop breeding frontier[J].Trends in Plant Science,2014,19(1):52-61.[4]ARAUS J L,KEFAUVER S C,ZAMAN-ALLAH M,et al.Translating high-throughput phenotyping into genetic gain[J].Trends in Plant Science,2018,23(5):451-466.[5]李晓斌,王玉顺,付丽红.用K-means图像法和主成分分析法监测生菜生长势[J].农业工程学报,2016,32(12):179-186.[6]DIAS P M B,BRUNEL-MUGUET S,DURR C,et al.QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula[J].Theoretical and Applied Genetics,2011,122(2):429-444.[7]SAKAMOTO T,SHIBAYAMA M,KIMURA A,et al.Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth[J].Isprs Journal of Photogrammetry & Remote Sensing,2011,66(6):872-882.[8]CLARK R T,FAMOSO A N,ZHAO K,et al.High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development[J].Plant Cell and Environment,2013,36(2):454-466.[9]王传宇,郭新宇,杜建军,等.基于时间序列图像的玉米植株干旱胁迫表型检测方法[J].农业工程学报,2016,32(21):189-195.[10]张智韬,边江,韩文霆,等.无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫[J].农业工程学报,2018,34(15):77-84.[11]王传宇,郭新宇,杜建军.基于时间序列红外图像的玉米叶面积指数连续监测[J].农业工程学报,2018,34(6):175-181.[12]贾士伟,李军民,邱权,等.基于激光测距仪的温室机器人道路边缘检测与路径导航[J].农业工程学报,2015,31(13):39-45.[13]郭庆华,杨维才,吴芳芳,等.高通量作物表型监测:育种和精准农业发展的加速器[J].中国科学院院刊,2018,33(9):940-946.[14]穆金虎,陈玉泽,冯慧,等.作物育种学领域新的革命:高通量的表型组学时代[J].植物科学学报,2016,34(6):962-971.[15]郭庆华,吴芳芳,庞树鑫,等.Crop 3D-基于激光雷达技术的作物高通量三维表型测量平台[J].中国科学:生命科学,2016,46(10):1210-1221.[16]LI L,ZHANG Q,HUANG D,et al.A review of imaging techniques for plant phenotyping[J].Sensors,2014,14(11):20078-20111.[17]周俞辰.基于激光三角测距法的激光雷达原理综述[J].电子技术与软件程,2016(19):94-95.[18]李长勇,蔡骏,房爱青,等.多传感器融合的机器人导航算法研究[J].机械设计与制造,2017(5):238-240,244.[19]张智刚,王进,朱金光,等.我国农业机械自动驾驶系统研究进展[J].农业工程技术,2018,38(18):23-27.[20]何勇,蒋浩,方慧,等.车辆智能障碍物检测方法及其农业应用研究进展[J].农业工程学报,2018,34(9):21-32.[21]王潇峰,张礼廉,胡小平,等.基于单目视觉的机器人避障方法研究[J].导航与控制,2018,17(1):56-64.[22]李庆,郑力新,潘书万,等.使用单目视觉的移动机器人导航方法[J].计算机工程与应用,2017,53(4):223-227.[23]王铮,赵晓,佘宏杰,等.基于双目视觉的AGV障碍物检测与避障[J].计算机集成制造系统,2018,24(2):400-409.[24]谷凤伟,金西虎,姜珊.基于双目视觉信息融合的移动机器人避障研究[J].电子世界,2015(18):54-57.[25]邢强,虞凯西,谷玉之.基于测距超声波传感器的间距平衡避障策略[J].现代电子技术,2018,41(20):97-99,103.[26]王玲玲,王宏.基于激光传感器的自主循迹智能车设计[J].电子测量术,2017,40(5):193-196.[27]袁文涛,刘卉,胡书鹏.面向自动导航拖拉机的农田障碍物识别研究[J].农机化研究,2018,40(10):247-251.[28]郭晓波,翟雁,吴丽娜.基于激光雷达信息的机器人障碍物检测[J].激光杂志,2017,38(9):58-60.[29]ASVADI A,PREMEBIDA C,PEIXOTO P,et al.3D Lidar-based static and moving obstacle detection in driving environments:An approach based on voxels and multi-region ground planes[J].Robotics & Autonomous Systems,2016,83(6):299-311.[30]PENG Y,QU D C,ZHONG Y,et al.The obstacle detection and obstacle avoidance algorithm based on 2-D lidar[C]//IEEE International Conference on Information and Automation.IEEE,2015:1648-1653.[31]肖宇峰,黄鹤,郑杰,等.Kinect与二维激光雷达结合的机器人障碍检测[J].电子科技大学学报,2018,47(3):337-342.[32]罗锡文.加快推进国家高标准农田建设[J].农村工作通讯,2015(14):1.[33]杨茂伟.三维激光扫描仪在地质灾害地形测绘中的应用[J].测绘通报,2016(5):145-146.[34]张靖,张爱能,刘国栋.三维激光扫描仪技术在地形测量中的应用[J].西安科技大学学报,2014,34(2):199-203.[35]董康.车载激光雷达农田三维地形测量方法研究与系统开发[D].泰安:山东农业大学,2012.[36]许迪,李益农,刘刚.激光控制农田土地精细平整应用技术体系研究进展[J].农业工程学报,2007(3):267-272.[37]杨青丰,尚业华,刘思雨,等.激光平地机自动调平控制系统的研制[J].安徽农业科学,2017,45(34):218-221.[38]陈国华,丁馨明.一种农田激光平地机及其应用方法[J].农业装备技术,2016,42(6):16-19.[39]KJAER K H,OTTOSEN C O.3D laser triangulation for plant phenotyping in challenging environments[J].Sensors,2015,15(6):13533-13547.[40]PAULUS S,SCHUMANN H,KUHLMANN H,et al.High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J].Biosystems Engineering,2014,121:1-11.[41]MAPHOSA L,THODAY-KENNEDY E,VAKANI J,et al.Phenotyping wheat under salt stress conditions using a 3D laser scanner[J].Israel Journal of Plant Sciences,2016,64(3-4):55-62.[42]苏伟,展郡鸽,张明政,等.基于机载LiDAR数据的农作物叶面积指数估算方法研究[J].农业机械学报,2016,47(3):272-277.[43]刘慧,潘成凯,沈跃,等.基于SICK和Kinect的植株点云超限补偿信息融合[J].农业机械学报,2018,49(10):284-291.[44]张瑜,汪小旵,孙国祥,等.基于激光视觉的温室作物茎叶量测方法[J].农业机械学报,2014,45(9):254-259.[45]GARRIDO M,PARAFOROS D S,REISER D,et al.3D maize plant reconstruction based on georeferenced overlapping LiDAR point clouds[J].Remote Sensing,2015,7(12):17077-17096.[46]郭鹏,武法东,戴建国,等.基于机载LiDAR数据的农田区植被高度估测研究[J].干旱区地理,2017,40(6):1241-1247.[47]BHATTA M,ESKRIDGE K M,ROSE D J,et al.Seeding rate,genotype,and topdressed nitrogen effects on yield and agronomic characteristics of winter wheat[J].Crop Science,2017,57(2):951-963.[48]NAVABI A,IQBAL M,STRENZKE K,et al.The relationship between lodging and plant height in a diverse wheat population[J].Canadian Journal of Plant Science,2006,86(3):723-726.[49]郭新年,周恒瑞,张国良,等.基于激光视觉的农作物株高测量系统[J].农业机械学报,2018,49(2):22-27.[50]YUAN W A,LI J T,BHATTA M,et al.Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS[J].Sensors,2018,18(11):3731.[51]UNDERWOOD J,WENDEL A,SCHOFIELD B,et al.Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle[J].Journal of Field Robotics,2017,34(6):1061-1083.[52]VIRLET N,SABERMANESH K,SADEGHI-TEHRAN P,et al.Field Scanalyzer:An automated robotic field phenotyping platform for detailed crop monitoring[J].Functional Plant Biology,2017,44(1):143-153.