|Table of Contents|

Application of LiDAR in Agriculture

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年20
Page:
150-156
Research Field:
Publishing date:

Info

Title:
Application of LiDAR in Agriculture
Author(s):
SUN Na12WANG Yanjun1QIU Quan2FAN Zhengqiang23
(1.College of Mechanical and Electrical Engineering,Hebei Agricultural University,Baoding,Hebei 071000;2.Beijing Research Center of Intelligent Equipment for Agriculture,Beijing 100097;3.College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling,Shaanxi 712100)
Keywords:
LiDARagriculturenavigationobstacle avoidancephenotype
PACS:
-
DOI:
10.11937/bfyy.20184237
Abstract:
As a new sensing technology,LiDAR can obtain morphological characteristics of the target in a non-contact manner.Compared with other types of sensors,it had many advantages,such as high accuracy,fast scanning speed,high resolution and strong anti-interference ability,and so on.Therefore,the sensor had been widely used in agricultural applications of research.This study introduced the laser sensor from two aspects,which were the principle of measuring distance of LiDAR and its application in agriculture.Principle of LiDAR measurement distance was divided into three types,namely triangulation,time-of-flight and interferometry.Among them,the latter two methods had higher measurement accuracy compared with the first,meanwhile,their requirements for hardware devices were relatively higher.Therefore,selecting the appropriate laser sensor for different application scenarios could effectively improve working efficiency;currently,the application of LiDAR in agriculture mainly included three aspects:autonomous navigation,topographical survey and mapping for field,and crop growth monitoring.Agricultural machinery can achieve autonomous navigation with the help of LiDAR,such as obstacle identification and path planning;based on the topographic mapping of field,we could artificially improve the flatness of the land to increase the utilization rate of irrigation water;by using LiDAR in combination with other sensors,it was possible to monitor the growth of the crop and to artificially supplement the nutrients needed during the crop growing process.

References:

[1]赵春江,杨信廷,李斌,等.中国农业信息技术发展回顾及展望[J].中国农业文摘-农业工程,2018,30(4):3-7.[2]胡静涛,高雷,白晓平,等.农业机械自动导航技术研究进展[J].农业工程学报,2015,31(10):1-10.[3]ARAUS J L,CAIRNS J E.Field high-throughput phenotyping:The new crop breeding frontier[J].Trends in Plant Science,2014,19(1):52-61.[4]ARAUS J L,KEFAUVER S C,ZAMAN-ALLAH M,et al.Translating high-throughput phenotyping into genetic gain[J].Trends in Plant Science,2018,23(5):451-466.[5]李晓斌,王玉顺,付丽红.用K-means图像法和主成分分析法监测生菜生长势[J].农业工程学报,2016,32(12):179-186.[6]DIAS P M B,BRUNEL-MUGUET S,DURR C,et al.QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula[J].Theoretical and Applied Genetics,2011,122(2):429-444.[7]SAKAMOTO T,SHIBAYAMA M,KIMURA A,et al.Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth[J].Isprs Journal of Photogrammetry & Remote Sensing,2011,66(6):872-882.[8]CLARK R T,FAMOSO A N,ZHAO K,et al.High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development[J].Plant Cell and Environment,2013,36(2):454-466.[9]王传宇,郭新宇,杜建军,等.基于时间序列图像的玉米植株干旱胁迫表型检测方法[J].农业工程学报,2016,32(21):189-195.[10]张智韬,边江,韩文霆,等.无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫[J].农业工程学报,2018,34(15):77-84.[11]王传宇,郭新宇,杜建军.基于时间序列红外图像的玉米叶面积指数连续监测[J].农业工程学报,2018,34(6):175-181.[12]贾士伟,李军民,邱权,等.基于激光测距仪的温室机器人道路边缘检测与路径导航[J].农业工程学报,2015,31(13):39-45.[13]郭庆华,杨维才,吴芳芳,等.高通量作物表型监测:育种和精准农业发展的加速器[J].中国科学院院刊,2018,33(9):940-946.[14]穆金虎,陈玉泽,冯慧,等.作物育种学领域新的革命:高通量的表型组学时代[J].植物科学学报,2016,34(6):962-971.[15]郭庆华,吴芳芳,庞树鑫,等.Crop 3D-基于激光雷达技术的作物高通量三维表型测量平台[J].中国科学:生命科学,2016,46(10):1210-1221.[16]LI L,ZHANG Q,HUANG D,et al.A review of imaging techniques for plant phenotyping[J].Sensors,2014,14(11):20078-20111.[17]周俞辰.基于激光三角测距法的激光雷达原理综述[J].电子技术与软件程,2016(19):94-95.[18]李长勇,蔡骏,房爱青,等.多传感器融合的机器人导航算法研究[J].机械设计与制造,2017(5):238-240,244.[19]张智刚,王进,朱金光,等.我国农业机械自动驾驶系统研究进展[J].农业工程技术,2018,38(18):23-27.[20]何勇,蒋浩,方慧,等.车辆智能障碍物检测方法及其农业应用研究进展[J].农业工程学报,2018,34(9):21-32.[21]王潇峰,张礼廉,胡小平,等.基于单目视觉的机器人避障方法研究[J].导航与控制,2018,17(1):56-64.[22]李庆,郑力新,潘书万,等.使用单目视觉的移动机器人导航方法[J].计算机工程与应用,2017,53(4):223-227.[23]王铮,赵晓,佘宏杰,等.基于双目视觉的AGV障碍物检测与避障[J].计算机集成制造系统,2018,24(2):400-409.[24]谷凤伟,金西虎,姜珊.基于双目视觉信息融合的移动机器人避障研究[J].电子世界,2015(18):54-57.[25]邢强,虞凯西,谷玉之.基于测距超声波传感器的间距平衡避障策略[J].现代电子技术,2018,41(20):97-99,103.[26]王玲玲,王宏.基于激光传感器的自主循迹智能车设计[J].电子测量术,2017,40(5):193-196.[27]袁文涛,刘卉,胡书鹏.面向自动导航拖拉机的农田障碍物识别研究[J].农机化研究,2018,40(10):247-251.[28]郭晓波,翟雁,吴丽娜.基于激光雷达信息的机器人障碍物检测[J].激光杂志,2017,38(9):58-60.[29]ASVADI A,PREMEBIDA C,PEIXOTO P,et al.3D Lidar-based static and moving obstacle detection in driving environments:An approach based on voxels and multi-region ground planes[J].Robotics & Autonomous Systems,2016,83(6):299-311.[30]PENG Y,QU D C,ZHONG Y,et al.The obstacle detection and obstacle avoidance algorithm based on 2-D lidar[C]//IEEE International Conference on Information and Automation.IEEE,2015:1648-1653.[31]肖宇峰,黄鹤,郑杰,等.Kinect与二维激光雷达结合的机器人障碍检测[J].电子科技大学学报,2018,47(3):337-342.[32]罗锡文.加快推进国家高标准农田建设[J].农村工作通讯,2015(14):1.[33]杨茂伟.三维激光扫描仪在地质灾害地形测绘中的应用[J].测绘通报,2016(5):145-146.[34]张靖,张爱能,刘国栋.三维激光扫描仪技术在地形测量中的应用[J].西安科技大学学报,2014,34(2):199-203.[35]董康.车载激光雷达农田三维地形测量方法研究与系统开发[D].泰安:山东农业大学,2012.[36]许迪,李益农,刘刚.激光控制农田土地精细平整应用技术体系研究进展[J].农业工程学报,2007(3):267-272.[37]杨青丰,尚业华,刘思雨,等.激光平地机自动调平控制系统的研制[J].安徽农业科学,2017,45(34):218-221.[38]陈国华,丁馨明.一种农田激光平地机及其应用方法[J].农业装备技术,2016,42(6):16-19.[39]KJAER K H,OTTOSEN C O.3D laser triangulation for plant phenotyping in challenging environments[J].Sensors,2015,15(6):13533-13547.[40]PAULUS S,SCHUMANN H,KUHLMANN H,et al.High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J].Biosystems Engineering,2014,121:1-11.[41]MAPHOSA L,THODAY-KENNEDY E,VAKANI J,et al.Phenotyping wheat under salt stress conditions using a 3D laser scanner[J].Israel Journal of Plant Sciences,2016,64(3-4):55-62.[42]苏伟,展郡鸽,张明政,等.基于机载LiDAR数据的农作物叶面积指数估算方法研究[J].农业机械学报,2016,47(3):272-277.[43]刘慧,潘成凯,沈跃,等.基于SICK和Kinect的植株点云超限补偿信息融合[J].农业机械学报,2018,49(10):284-291.[44]张瑜,汪小旵,孙国祥,等.基于激光视觉的温室作物茎叶量测方法[J].农业机械学报,2014,45(9):254-259.[45]GARRIDO M,PARAFOROS D S,REISER D,et al.3D maize plant reconstruction based on georeferenced overlapping LiDAR point clouds[J].Remote Sensing,2015,7(12):17077-17096.[46]郭鹏,武法东,戴建国,等.基于机载LiDAR数据的农田区植被高度估测研究[J].干旱区地理,2017,40(6):1241-1247.[47]BHATTA M,ESKRIDGE K M,ROSE D J,et al.Seeding rate,genotype,and topdressed nitrogen effects on yield and agronomic characteristics of winter wheat[J].Crop Science,2017,57(2):951-963.[48]NAVABI A,IQBAL M,STRENZKE K,et al.The relationship between lodging and plant height in a diverse wheat population[J].Canadian Journal of Plant Science,2006,86(3):723-726.[49]郭新年,周恒瑞,张国良,等.基于激光视觉的农作物株高测量系统[J].农业机械学报,2018,49(2):22-27.[50]YUAN W A,LI J T,BHATTA M,et al.Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS[J].Sensors,2018,18(11):3731.[51]UNDERWOOD J,WENDEL A,SCHOFIELD B,et al.Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle[J].Journal of Field Robotics,2017,34(6):1061-1083.[52]VIRLET N,SABERMANESH K,SADEGHI-TEHRAN P,et al.Field Scanalyzer:An automated robotic field phenotyping platform for detailed crop monitoring[J].Functional Plant Biology,2017,44(1):143-153.

Memo

Memo:
-
Last Update: 2019-11-04