|Table of Contents|

Effects of Put on Seed Germination and Resistance of Phaseolus vulgaris Under Imbibition and Chilling Injury(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年13
Page:
10-16
Research Field:
Publishing date:

Info

Title:
Effects of Put on Seed Germination and Resistance of Phaseolus vulgaris Under Imbibition and Chilling Injury
Author(s):
LIU ChangLI JiayinLIU DajunYANG XiaoxuFENG Guojun
(Crop Research Institute,Heilongjiang University,Harbin,Heilongjiang 150000)
Keywords:
Phaseolus vulgarisseedimbibition and chilling injuryPut
PACS:
-
DOI:
10.11937/bfyy.20183754
Abstract:
In order to improve the germination rate of Phaseolus vulgaris seeds under imbibition and chilling injury,and alleviate the damage of imbibition and ichilling injury to snap bean seeds.In the study,the seeds of Phaseolus vulgaris ‘Renaya’,which were of low temperature sensitivity were used as experimental materials.And three treatment groups were set,respectively CK (normal temperature control),LT (4 ℃ low temperature treatment) and LT+Put (4 ℃ low temperature treatment with Put of 1 mmol?L-1 added) to study the effect of exogenous Put on the germination and resistance of Phaseolus vulgaris seeds under imbibitional chilling.The results showed that the germination rate,germination index and seed vigor in group LT+Put were increased by 87.12%,124.21% and 191.99%,respectively,compared with the group LT.Also,as for the seeds of group LT+Put,their cell membrane permeability and soluble material content increased,antioxidant enzyme activity and content of O?[TX-*4]2,H2O2 and MDA also increased compared with those in group LT.It indicated that the addition of exogenous Put may increase the cell membrane permeability and the content of soluble material,induce the activity of antioxidant enzymes,directly or indirectly regulate the ROS scavenging system to improve the resistance of Phaseolus vulgaris seeds to imbibitional chilling,and improve the germination rate,germination index and seed vigor of Phaseolus vulgaris seeds.

References:

[1]BEWLEY J D.Seed germination and dormancy[J].Plant Cell,1997(9):1055-1066.[2]WEITBRECHT K,MULLER K,LEUBNER-METZGER G.First off the mark:Early seed germination[J].Journal of Experimental Botany,2011,62:3289-3309.[3]POLLOCK B M.Imbibition temperature sensitivity of lima bean seeds controlled by initial seed moisture[J].Plant Physiology,1969,44:907-911.[4]CHRISTIENSEN M N.Periods of sensitivity to chilling in germinating cotton[J].Plant Physiology,1967,42:431-433.[5]POWELL A A,MATTHEWS S.The damaging effect of water on dry pea embryos during imbibition[J].Journalof Experimental Botany,1978,29:1215-1229.[6]MAKEEN A M,NORMAH M N,DUSSERT S,et al.Seed moisture characteristics in relation to totallipid content of five Citrus taxa using an equilibrium dehydration protocol[J].Seed Science and Technology,2006,34:453-464.[7]POSMYK M M,BALABUSTA M,WIECZOREK M,et al.Melatonin applied to cucumber(Cucumis sativus L.) seeds improves germination during chilling stress[J].Journal of Pineal Research,2009,46:214-223.[8]HOBBS P R,OBENDORF R L.Interaction of initial seed moisture and imbibitional temperature on germination and productivity of soybean[J].Crop Science,1972,12:664-667.[9]郑昀晔,曹栋栋,张胜,等.多胺对玉米种子吸胀期间耐冷性和种子发芽能力的影响[J].作物学报,2008,34(2):261-267.[10]ZHANG W,JIANG B,LI W,et al.Polyamines enhance chilling tolerance of cucumber(Cucumis sativus L.) through modulating antioxidative system[J].Scientia Horticulturae,2009,122(2):200-208.[11]SONG Y,DIAO Q,QI H.Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems[J].Acta Physiologiae Plantarum,2014,36(11):3013-3027.[12]SAIRAM R K,SRIVASTAVA G C.Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J].Plant Science,2002,162(6):897-904.[13]GIANNOPOLITIS C N,RIES S K.Superoxide dismutases:I.occurrence in higher plants[J].Plant Physiology,1977,59(2):309-314.[14]THOMAS R L,JEN J J,MORR C V.Changes in solule and ound peroxidase,IAA oxidase during tomato fruit development[J].J Food Sci,1981,47:158-161.[15]CAKMAK I,MARSCHNER H.Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves[J].Plant Physiology,1992,98(4):1222-1227.[16]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003:268-269.[17]DHINDSA R S,PULM-DHNDSA P,THORPE T A.Leaf senescence:Correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase[J].Journal of Experimental Botany,1981,32(126):93-101.[18]李合生.植物生理生化实验原理和技术[M].北京:商等教育出版社,2003.[19]PATTERSON B D,MACRAE E A,FERGUSON I B.Estimation of hydrogen peroxide in plant extracts using titanium(IV)[J].Analytical Biochemistry,1984,139(2):487-492.[20]ELSTNER E F,HEUPEL A.Inhibition of nitrite formation from hydroxylammonium chloride:A simple assay for superoxide dismutase[J].Analytical Biochemistry,1976,70(2):616-620.[21]ANDRONIS E A,MOSCHOU P N,TOUMI I,et al.Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana[J].Frontiers in Plant Science,2014,5(2):132.[22]WANG Y F, WANG P C,WU J H,et al.Effect of polyamine priming on chilling tolerance of Lolium perenne during seed imbibitions[J].Agricultural Science & Technology,2012(9):1859-1863,1869.[23]杨德光,马月,刘永玺,等.低温胁迫下外源CaCl2对玉米种子萌发及幼苗生长的影响[J].玉米科学,2018(3):83-88.[24]赵萌,魏小红.吸胀冷害下外源NO对紫花苜蓿种子萌发及抗氧化性的影响[J].草业学报,2015,24(4):87-94.[25]刘姗姗,杨特武,黄海东,等.吸胀期低温与水分条件对油菜种子萌发的耦合效应[J].中国油料作物学报,2014,36(1):44.[26]CHEN T H H,MURATA N.Enhancement of tolerance of abioticstress by metabolic engineering of betaines and other compatiblesolutes[J].Curr Opin Plant Biol,2002,5(3):250-257.[27]KAPLAN F,KOPKA J,HASKELL D W,et al.Exploring the temperature-stress metabolome of Arabidopsis[J].Plant Physiol,2004,136(4):4159-4168.[28]USADEL B,BLASING O E,GIBON Y,et al.Multilevelgenomic analysis of the response of transcripts,enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range[J].Plant Cell Environ,2008,31(4):518-547.[29]WANG X,SHI G,XU Q,et al.Exogenous polyamines enhance copper tolerance of Nymphoides peltatum[J].J Plant Physiol,2007,164:1062-1070.[30]宋永骏.多胺在番茄幼苗耐低温胁迫中的调控作用[D].沈阳:沈阳农业大学,2014.[31]PRASAD T K.Role of catalase in inducing chilling tolerance inpre-emergent maize seedlings[J].Plant Physiol,1997,114:1369-1376.[32]ZHANG W,JIANG B,LI W,et al.Polyamines enhance chilling tolerance of cucumber(Cucumis sativus L.) through modulating antioxidative system[J].Sci Hortic,2009,122:200-208.[33]TAMBUSSI E A,BARTOLI G G,GUIAMET J J,et al.Oxidative stress and photo damage at low temperatures in soybean (Glycine max L.Merr.) leaves[J].Plant Sci,2004,167:19-26.[34]GILL S S,TUTEJA N.Reactive oxygen species and antioxidantmachinery in abiotic stress tolerance in crop plants[J].Plant Physiol Biochem,2010,48:909-930.[35]BOUCHEREAU A,AZIZ A,MARTIN-TANGUY J,et al.Polyamines and environmental challenges:Recent development[J].Plant Sci,1999,140(2):103-125.[36]JALEEL CA,RIADH K,GOPI R,et al.Antioxidant defense response:Physiological plasticity in higher plants under abiotic constraints[J].Acta Physiol Plant,2009,31:427-436.

Memo

Memo:
-
Last Update: 2019-07-26