|Table of Contents|

Effects of Mn Stress on Growth,Physiological and Biochemical Characteristics of Daucus carota Seedling

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年10
Page:
23-30
Research Field:
Publishing date:

Info

Title:
Effects of Mn Stress on Growth,Physiological and Biochemical Characteristics of Daucus carota Seedling
Author(s):
WU YaowenYANG CanxinLI XinhangXIAO ZehuaKUANG XueshaoLIU Wensheng
(Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant,Central South University of Forestry and Technology,Changsha,Hunan 410018)
Keywords:
MnDaucus carotastressphysiological and biochemicalseedling growth
PACS:
-
DOI:
10.11937/bfyy.20183569
Abstract:
Daucus carota has the characteristics of high biomass,strong adaptability and beautiful plant type.It is an important candidate plant for Mn-phytoremediation.Taking D.carota as test materials and revealing the physiological and biochemical adaptive mechanism to Mn stress,seedling growth and physiological and biochemical characteristics were compared for seedlings of D.carota growing under different Mn concentrations (0-2 000 mg?kg-1) by potted test methods.The results showed that with the increasing Mn concentration,seedling growth showed the trend of first increasing and then decreasing;100-500 mg?kg-1 Mn stress promoted the growth of D.carota seedlings;when the Mn concentration was over 1 500 mg?kg-1,the value of plant height,root length and underground dry weight were all smaller than those of the control.With the increasing of Mn concentration,the contents of chlorophyll,soluble sugar,soluble protein,proline,and activities of superoxide dismutase and peroxidase all showed the trend of first increasing and then decreasing,and reached the maximum under 500 mg?kg-1 Mn stress.However,catalase activity showed a downward trend with the rising Mn concentration,and malondialdehyde content showed a trend of first decreasing and then increasing.The results of the study revealed that D.carota could respond to Mn stress by increasing the concentration of osmotic adjustment substances and enhancing the activity of antioxidant enzymes,so as to maintain normal growth of plants under high Mn concentration and illustrated strong Mn tolerance.

References:

[1]梁文斌,薛生国,沈吉红,等.锰胁迫对垂序商陆叶片形态结构及叶绿体超微结构的影响[J].生态学报,2011,31(13):3677-3683.[2]BECERRA-CADTRO C,MONTERROSO C,PRIETO-FERNANDEZ A,et al.Pseudometallophytes colonising Pb/Zn mine tailings:A description of the plant microorganism rhizosphere soil system and isolation of metal-tolerant bacteria[J].Journal of Hazardous Materials,2012,217:350-359.[3]薛生国,陈英旭,骆永明,等.商陆(Phytolacca acinosa)的锰耐性和超积累[J].土壤学报,2004(6):889-895.[4]MUKAOPADHYAY M J,SHARMA A.Manganese in cell metabolism of higher plants[J].Botanical Review,1991,57:117-149.[5]张玉秀,李林峰,柴团耀,等.锰对植物毒害及植物耐锰机理研究进展[J].植物学报,2010,45(4):506-520.[6]任立民,刘鹏.锰毒及植物耐性机理研究进展[J].生态学报,2007(1):357-367.[7]SHENKER M,PLESSNER O E,TELOR E.Manganese nutrition effects on tomato growth,chlorophyll concentration,and superoxide dismutase activity[J].Journal of Plant Physiology,2004,161:197-202.[8]汪结明,王良桂,韩改改.4种藤本植物对锰污染土壤的耐受性及其生理响应[J].西北植物学报,2015,35(8):1604-1611.[9]汪结明,王良桂,樊亚珍,等.3种蕨类植物对锰污染土壤的耐受性及生理响应[J].复旦学报(自然科学版),2016,55(3):397-403.[10]李美,邵邻相,徐玲玲,等.野胡萝卜花挥发油成分分析及生物活性研究[J].中国粮油学报,2012,27(9):112-115.[11]董林林,赵先贵,张素娟,等.污染土壤中植物富集重金属的差异性研究[J].土壤通报,2009,40(2):374-377.[12]柯文山,熊治廷,谢明吉,等.不同来源的海州香薷和野胡萝卜的铜抗性及铜积累差异[J].环境工程学报,2007(5):94-100.[13]吴燕,万永红,谢明吉.铜胁迫下两种来源野胡萝卜的膜脂过氧化水平比较[J].湖北大学学报(自然科学版),2006(3):313-316.[14]张志良,瞿伟菁,李小方.植物生理学实验指导[M].3版.北京:高等教育出版社,2003:127-130.[15]LI G,WAN S W,ZHOU J,et al.Leaf chlorophyll fluorescence,hyperspectral reflectance,pigments content,malondialdehyde and proline accumulation responses of castor bean (Ricinus communis) seedlings to salt stress level[J].Industrial Crops and Products,2010,31:13-19.[16]LOIC R,MANUEL D,KARINE G.Seed germination and vigor[J].Annual Review of Plant Biology,2012,63:507-533.[17]NASR S M H,SAVADKOOHI S K,AHMADI E.Effect of different seed treatments on dormancy breaking and germination in three species in arid and semi-arid lands[J].Forest Science and Practice,2013(15):130-136.[18]DANA Z,JENS K,CHRISTEL B,et al.Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy[J].Science of the Total Environment,2011,409:4094-4100.[19]王佳,罗学刚,石岩,等.锰胁迫对美洲商陆种子发芽及幼苗生长的影响[J].环境科学与技术,2014,37(11):47-52.[20]曹春晖,孙世春,王学魁,等.锰浓度对米氏凯伦藻叶绿素荧光特性及生长的影响[J].生态学报,2010,30(19):5280-5288.[21]王玉英,徐慧妮,陈丽梅,等.硝酸盐水平对芹菜幼苗生理及生长特性的影响[J].西北植物学报,2012,32(6):1171-1178.[22]SINGH V,BHATT I,AGGARWAL A,et al.Proline improves copper tolerance in chickpea (Cicer arietinum)[J].Protoplasma,2010,245:173.[23]潘高,张合平,刘鹏,等.锰胁迫对苍耳种子萌发及幼苗生理生化特性的影响[J].草业学报,2017,26(11):157-166.[24]任立民,刘鹏,蔡妙珍,等.水蓼、小飞蓬、杠板归和美洲商陆对锰毒的生理响应[J].水土保持学报,2007(3):81-85.[25]马生军,王文全,杜润清,等.锰胁迫对甘草生理和生长特性的影响[J].西北药学杂志,2015,30(1):4-8.[26]文珂,郭晓玉,谭娜娜,等.锰胁迫对野大豆种子萌发及幼苗生理生化特征的影响[J].种子,2018,37(3):40-45.[27]王松华,张华,何庆元.铜胁迫对紫花苜蓿幼苗叶片抗氧化系统的影响[J].应用生态学报,2011,22(9):2285-2290.

Memo

Memo:
-
Last Update: 2019-06-26