|Table of Contents|

Comparison of the Fitting Several Models With the Chlorophyll Fluorescence Rapid Light Curves (RLCS) Method of Sophora moorcroftiana

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年09
Page:
83-89
Research Field:
Publishing date:

Info

Title:
Comparison of the Fitting Several Models With the Chlorophyll Fluorescence Rapid Light Curves (RLCS) Method of Sophora moorcroftiana
Author(s):
ZHAO YuwenLIN LingNAN JibinLI YingpingDUAN Shaorong
(College of Resources and Environment,Tibet Agricultural and Animal Husbandry University,Linzhi,Tibet 860000)
Keywords:
chlorophyll fluorescence-rapid light curvemodified rectangular hyperbolic modelelectron transport ratesaturation irradianceSophora moorcroftiana
PACS:
-
DOI:
10.11937/bfyy.20183248
Abstract:
The chlorophyll fluorescence-rapid light curve of two provenances of Sophora moorcrofiana was fittd by rectangular hyperbolic model,non-rectangular hyperbolic model,single exponential equation,double exponential equation and modified rectangular hyperbolic model with Sophora moorcrofiana of Tibet as a research material,and the applicability of five models to the chlorophyll fluorescence-rapid light curve of Sophora moorcroftiana was studied.In order to provide a reference for screening the optimal model and further studied the physiology and ecology of Sophora moorcrofiana.The results showed that rectangular hyperbolic model,non-rectangular hyperbolic model and single exponential equation could not fit the curves (photoinhibition) with dynamic down-regulation of PSⅡ and could not directly calculate the saturation irradiance (PARsat) of Sophora moorcrofiana,and the maximum electron transport rate (Jmax) was higher than the measured values.The main fluorescence parameters fitted by the double exponential equation and modified rectangular hyperbolic model of Sophora moorcroftiana,but the maximum electron transfer rate (Jmax) fitted by the double exponential equation was lower than the measured value,and the saturation irradiance (PARsat) was higher than the measured value.The main fluorescence parameters fitted by modified rectangular hyperbolic model had the strongest correlation with the measured values (R2=0.998,R2=0.994).Root Mean Square Error (RMSE),Mean Absolute Error (MAE) and Akaichi Information Criterion (AIC) were used to evaluate the five photosynthetic models,it was found that the fluorescence parameters fitted by modified rectangular hyperbola model had the highest credibility and it had a significant superior to the other four photosynthetic models.In the five photosynthetic models,modified rectangular hyperbolic model was the best model to fit the chlorophyll fluorescence-rapid light curve of Sophora moorcrofiana.

References:

[1]钱永强,周晓星,韩蕾,等.3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J].北京林业大学学报,2011,33(6):8-14.[2]胡文海,张斯斯,肖宜安,等.两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制[J].植物生态学报,2015,39(11):1093-1100.[3]王春萍,雷开荣,李正国,等.低温胁迫对水稻幼苗不同叶龄叶片叶绿素荧光特性的影响[J].植物资源与环境学报,2012,21(3):38-43.[4]马锦丽,江洪,舒海燕,等.天目山自然保护区典型阔叶林的光合特性[J].福建农林大学学报(自然科学),2016,45(4):381-390.[5]黄鑫浩,朱凡,胡丰姣,等.基于Lake模型的Pb胁迫对木荷和栾树幼树叶片叶绿素荧光参数的影响研究[J].生态学报,2018,38(4):1284-1292.[6]陈卫英,陈真勇,罗辅燕,等.光响应曲线的指数改进模型与常用模型比较[J].植物生态学报,2012,36(12):1277-1285.[7]张利阳,温国胜,王圣杰,等.毛竹光响应模型适用性分析[J].浙江农林大学学报,2011,28(2):187-193.[8]FANG L D,ZHANG S Y,ZHANG G C,et al.Application of five light-response model in the photosynthesis of Populus×Euramericana cv.‘Zhongline46’ leaves[J].Applied Biochemistry Biotechnology,2015,176(1):86-100.[9]柴胜丰,唐健民,杨雪,等.4种模型对黄枝由杉光合光响应曲线的拟合分析[J].广西科学院学报,2015,31(4):1-4.[10]朱弘,温国胜.3种模型对毛竹快速生长期冠层叶片叶绿素荧光-快速光响应曲线(RLCS)拟合的比较[J].福建农林大学学报(自然科学版),2017,46(6):659-664.[11]周可金,肖文娜,官春云.不同油菜品种角果光合特性及叶绿素荧光参数的差异[J].中国油料作物学报,2009,31(3):316-321.[12]刘强,李凤日,谢龙飞.人工长白落叶松冠层光合作用-光响应曲线最优模型[J].应用生态学报,2016,27(8):2420-2428.[13]林玲,叶彦辉,罗建,等.青藏高原特有种砂生槐不同种源地种子萌发特征研究[J].林业科学研究,2014,27(4):508-513.[14]郭其强,罗大庆,方江平,等.西藏砂生槐的研究现状及其利用与保护对策[J].西北林学院学报,2009,24(1):98-101.[15]赵玉文,段少荣,郑雨,等.几种光合作用模型下砂生槐光响应和CO2响应曲线的比较[J].高原农业,2017,1(2):159-165,131.[16]CHEN Z Y,PENG Z S,YANG J,et al.A mathematical model for describing light-response curves in Nicotianata bacum L[J].Photosynthetica,2011,49:467-471.[17]AKAIKE H.A new look at the statistical model identification[J].Transactions on Automatic Control,1974,19(6):716-723.[18]高利霞,毕润成,闫明.山西霍山油松林的物种多度分布格局[J].植物生态学报,2011,35(12):1256-1270.[19]刘泽彬,程瑞梅,肖文发,等.不同淹水时间下中华蚊母树光响应特征及其模型比较[J].应用生态学报,2015,26(4):1083-1090.[20]叶子飘,王建林.植物光合-光响应模型的比较分析[J].井冈山学院学报(自然科学),2009,30(4):9-13.[21]陈雪莲,徐六一,郝焰平,等.马尾松光合作用光响应曲线模型拟合[J].江西农业学报,2017,29(10):24-30.[22]钱莲文,张新时,杨智杰,等.几种光合作用光响应典型模型的比较研究[J].武汉植物学研究,2009,27(2):197-203.[23]叶子飘,李进省.光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J].井冈山大学学报(自然科学),2010,31(3):38-44.[24]廖小锋,刘济明,张东凯,等.野生小蓬竹的光合光响应曲线及其模型拟合[J].中南林业科技大学学报,2012,32(3):124-128.[25]段爱国,张建国.光合作用光响应曲线模型选择及低光强属性界定[J].林业科学研究,2009,22(6):765-771.[26]叶子飘,高峻.光响应和CO2响应新模型在丹参中的应用[J].西北农林科技大学学报(自然科学版),2009,37(1):129-134.[27]叶子飘,康华靖,陶月良,等.不同模型对黄山栾树快速光曲线拟合效果的比较[J].生态学杂志,2011,30(8):1662-1667.[28]朱弘,温国胜.不同竹龄毛竹冠层叶片PSⅡ叶绿素荧光特性的比较[J].中南林业科技大学学报,2017,37(1):12-19.[29]侯维海,王建林,旦巴,等.青稞光合作用5种光响应模型的比较分析[J].作物杂志,2017(4):96-104.[30]朱世忠.油松光合光响应曲线的模型拟合比较研究[J].山西大学学报(自然科学版),2016,39(4):679-685.[31]吴志庄,高贵宾,熊德礼,等.9个主要丛生竹种光响应曲线的研究[J].竹子研究汇刊,2013,32(2):16-20.[32]王锦旗,宋玉芝,薛艳.紫外辐射对菹草成株快速光响应曲线的影响[J].湖泊科学,2015,27(3):451-458.

Memo

Memo:
-
Last Update: 2019-06-11