|Table of Contents|

Effects of Simulated Drought Stress on Growth and Photosynthetic Characteristics of Sedum sarmentosum Bunge

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年09
Page:
125-131
Research Field:
Publishing date:

Info

Title:
Effects of Simulated Drought Stress on Growth and Photosynthetic Characteristics of Sedum sarmentosum Bunge
Author(s):
YANG ShujunLIU XiaoWANG RuijieZHAO QingLIAO HaiminWANG Jianjian
(College of Life Sciences,Guizhou University,Guiyang,Guizhou 550025)
Keywords:
Sedum sarmentosum Bungedrought stressgrowthchlorophyll fluorescence parameters
PACS:
-
DOI:
10.11937/bfyy.20183175
Abstract:
In order to study the effects of drought stress on the growth and photosynthetic characteristics of Sedum sarmentosum,taking Sedum sarmentosum as test material,four different drought treatments (1,3,6,9 days) were set up to determine the growth and chlorophyll fluorescence characteristics of Sedum sarmentosum under different drought conditions.The results showed that with the increase of drought degree,the total number of leaves,specific leaf area,leaf thickness,plant height and root length decreased significantly.Root dry weight,stem quality,leaf dry mass and total biomass decreased significantly.Leaf biomass ratio and specific leaf area were significantly reduced,stem biomass ratio increased significantlyand root biomass ratio did not change significantly.Chlorophyll content first increased and then decreased,reached the maximum in mild drought (continuous drought 3 days),and the lowest in severe drought (continuous drought 9 days).The maximum photochemical quantum yield (Fv/Fm),electron transport rate (ETR),and photochemical quenching coefficient (qP) of PSII decreased significantly,while the non-photochemical quenching coefficient (NPQ) increased significantly with the degree of drought.Under drought conditions,the growth and development of Sedum sarmentosum plants were inhibited,the photosynthetic capacity of Sedum sarmentosum seedlings showed some adaptability in mild drought,while the severe drought had a serious impact on seedling photosynthesis.

References:

[1]OLESEN J E,TRNKA M,KERSEBAUM K C,et al.Impacts and adaptation of European crop production systems to climate change[J].European Journal of Agronomy,2011,34(2):96-112.[2]CHEN H,WANG J,HUANG J.Policy support,social capital,and farmers′ adaptation to drought in China[J].Global Environmental Change,2014,24:193-202.[3]LAIO F,PORPORATO A,RIDOLFI L,et al.Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress:II.Probabilistic soil moisture dynamics[J].Advances in Water Resources,2001,24(7):707-723.[4]SELMAR D.Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants[J].Industrial Crops & Products,2013,42(1):558-566.[5]FAROOQ M,KOBAYASHI N,ITO O,et al.Broader leaves result in better performance of indica rice under drought stress[J].Journal of Plant Physiology,2010,167(13):1066-1075.[6]李瑞姣,陈献志,岳春雷,等.干旱胁迫对日本荚蒾幼苗光合生理特性的影响[J].生态学报,2018,38(6),2041-2047.[7]柴胜丰,唐健民,王满莲,等.干旱胁迫对金花茶幼苗光合生理特性的影响[J].西北植物学报,2015,35(2):322-328.[8]王玉丽,孙居文,荀守华,等.干旱胁迫对东岳红光合特性、叶绿素荧光参数及叶片相对含水量的影响[J].山东农业科学,2017(4):52-56.[9]贺亚川,俎伟华,王琴,等.6种多浆植物耐旱性初步比较[J].西北农业学报,2010,19(3):127-130.[10]魏太明.垂盆草化学成分及质量研究[D].北京:北京中医药大学,2003.[11]徐常青,陈君.药食兼用特菜-垂盆草[J].北方园艺,2009(7):220-221.[12]路之娟,张永清,张楚.干旱胁迫对不同苦荞品种苗期生长和根系生理特征的影响[J].西北植物学报,2018,38(1):112-120.[13]姚小兰,周琳,冯茂松,等.干旱胁迫对不同基质网袋桢楠幼苗生长及生物量的影响[J].植物研究,2018,38(1):81-90.[14]罗杰,周光良,胡庭兴,等.干旱胁迫对润楠幼苗生长和生理生化指标的影响[J].应用与环境生物学报,2015,21(3):563-570.[15]井大炜,邢尚军,杜振宇,等.干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J].应用生态学报,2013,24(7):1809-1816.[16]单长卷,郝文芳,梁宗锁,等.不同土壤干旱程度对刺槐幼苗水分生理和生长指标的影响[J].西北农业学报,2005,14(2):44-49.[17]郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究[J].干旱区资源与环境,1998(2):101-106.[18]贾鑫,孙窗舒,李光跃,等.干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响[J].西北植物学报,2018,38(3):501-509.[19]牛素贞,樊卫国.喀斯特地区古茶树幼苗对干旱胁迫的生理响应及其抗旱性综合评价[J].园艺学报,2013,40(8):1541-1552.[20]李长志,李欢,刘庆,等.不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较[J].植物营养与肥料学报,2016,22(2):511-517.[21]赵春桥,陈敏,侯新村,等.干旱胁迫对柳枝稷生长与生理特性的影响[J].干旱区资源与环境,2015,29(3):126-130.[22]赵春桥,陈敏,侯新村,等.干旱胁迫对芒草生长与生理特性的影响[J].干旱区资源与环境,2015,29(11):197-201.[23]蒙芳,曹艳云,欧芷阳,等.干旱胁迫对蚬木幼苗生长及光合特征的影响[J].广西林业科学,2017,46(2),186-191.[24]裴斌,张光灿,张淑勇,等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报,2013,33(5):1386-1396.[25]魏晓东,陈国祥,施大伟,等.干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J].生态学报,2012,32(23):7492-7500.[26]季杨,张新全,彭燕,等.干旱胁迫对鸭茅幼苗根系生长及光合特性的影响[J].应用生态学报,2013,24(10):2763-2769.[27]薛惠云,张永江,刘连涛,等.干旱胁迫与复水对棉花叶片光谱、光合和荧光参数的影响[J].中国农业科学,2013,46(11):2386-2393.[28]张鑫.干旱胁迫对美国红枫幼苗生长及叶色变化影响研究[D].沈阳:沈阳农业大学,2016.[29]卞付萍.干旱胁迫下水榆花楸生长及生理特性的研究[D].南京:南京林业大学,2014.[30]ZANG,ULRICH,KARL-HEINZ H,et al.Effects of drought stress on photosynthesis,rhizosphere respiration,and fine-root characteristics of beech saplings:A rhizotron field study[J].Journal of Plant Nutrition & Soil Science,2014,177(2):168-177.[31]CHAVES M M,FLEXAS J,PINHEIRO C.Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell[J].Annals of Botany,2008,103(4):551-560.

Memo

Memo:
-
Last Update: 2019-06-11