|Table of Contents|

Spectral Inversion of the Water Content of Hazelnut Leaves at Various Phenological Periods of Fruit Development

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年09
Page:
20-26
Research Field:
Publishing date:

Info

Title:
Spectral Inversion of the Water Content of Hazelnut Leaves at Various Phenological Periods of Fruit Development
Author(s):
HU ZhenzhuPAN CundeZHAO Shanchao
(College of Forestry and Horticulture,Xinjiang Agricultural University/Key Laboratory of Forestry Ecology and Industry Technology in Arid Region,Education Department of Xinjiang,Urumqi,Xinjiang 830052)
Keywords:
Corylus heterophylla×Corylus avellanayleafwater contentspectral reflectancespectral inversion
PACS:
-
DOI:
10.11937/bfyy.20183085
Abstract:
The ‘Pingou’ hybrids was used as the research object,the spectral characteristics of hazelnut leaves under different water gradients were analyzed,and the effective spectral characteristic parameters of hazelnut leaf water content were selected by using Person-correlation analysis.Accuracy analysis of the model with high fit degree was carried out to determine the suitable water content spectral inversion model for hazelnut leaves,a spectral inversion model of hazelnut leaf water content was constructed in order to realize the accurate management of moisture content in hazelnut tree in the field orchard.The results showed that the spectral reflectance of hazelnut leaves decreased with the increase of water content in visible band and increased with the increase of water content in near-infrared band.Fruit setting period,fruit rapid growth period,fruit fat change period and fruit near-mature period,leaf water content and water index WI,normalized difference water index NDVI,the ratio index WI/NDVI,water band index WBI,central wavelength water index Ratio975,optical/physiological reflectance index PRI all achieved very significant correlation.The three function models of tree water content at different phenological periods of fruit development were constructed with the most relevant effective spectral characteristic parameters WI/NDVI,WI/NDVI,WI and WBI.The results showed that it was feasible to use spectral inversion model to monitor the water content of hazelnut trees.

References:

[1]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.[2]朱西存,姜远茂,赵庚星,等.基于光谱指数的苹果叶片水分含量估算模型研究[J].中国农学通报,2014,30(4):120-126.[3]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73-80.[4]ZHANG Q X,Li Q B,ZHANG G J.Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection[J].Spectroscopy,2012,27(2):93-105.[5]BROGE N H,LEBLANC E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J].Remote Sensing of Environment,2001,76(2):156-172.[6]DAUGHTRY C S T,WALTHALL C L,KIM M S,et al.Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J].Remote Sensing of Environment,2000,74(2):229-239.[7]HABOUDANE,MILLER D J R,PATTEY E,et al.Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture[J].Remote Sensing of Environment,2004,90(3):337-352. [8]HABOUDANE,MILLER D J R,TREMBLAY N,et al.Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J].Remote Sensing of Environment,2002,81(2-3):416-426.[9]SCHLERF,ATZBERGER M C,HILL J.Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J].Remote Sensing of Environment,2005,95(2):177-194.[10]THENKABAIL,SMITH P S R B,DEPAUW E.Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization[J].Photogrammetric Engineering and Remote Sensing,2002,68(6):607-621.[11]林海军,李霞,牛婷,等.不同地下水埋深条件下胡杨叶片光谱特征分析[J].干旱区资源与环境,2013,27(11):80-85.[12]潘佩芬,杨武年,戴晓爱.基于主成分分析的植被含水率模型[J].国土资源遥感,2013,25(3):38-42.[13]李阳阳,孙雨安,王国庆,等.基于高光谱的大叶女贞叶片水分定量测定[J].河南师范大学学报(自然科学版),2017,45(6):47-51.[14]杨勇,张冬强,李硕,等.基于光谱反射特征的柑橘叶片含水率模型[J].中国农学通报,2011,27(2):180-184.[15]李梦竹.基于高光谱遥感的烤烟叶水分状况监测研究[D].郑州:河南农业大学,2017.[16]PENUELAS J,FILELLA I,SWEEANO L.Cell wall elastivity and water index (R970/R900) in wheat under different nitrogen avail abilities[J].International Journal of Remote Sensing,1996,17(3):373-382.[17]PENAUELAS J,PINAOL J,OGAYA R,et al.Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J].International Journal of Remote Sensing,1997,18(13):2869-2875.[18]RIEDELL W E,BLACKMER T M.Leaf reflectance spectra of cereal aphid damaged wheat[J].Crop Science,1999,39(6):1835-1840.[19]PU R G S,KELL N M,GONG P.Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves[J].International Journal of Remote Sensing,2003,24(9):1799-1810.[20]THENO F,MTHY M,WINKEL T.The photochemical reflectance index (PRI) as a water-stress index[J].International Journal of Remote Sensing,2002,23:5135-5139.[21]ZHANG J,DAVIES W J.Anti-transpirant activity in xylem sap of maize plants[J].Journal of Experimental Botany,1991,42:317-321.[22]谢深喜,张秋明,熊兴耀,等.水分胁迫对柑橘叶片和根系细胞超微结构的影响[J].湖南农业大学学报(自然科学版),2008,34(2):168-172.[23]林川,宫兆宁,赵文吉.叶冠尺度野鸭湖湿地植物群落含水量的高光谱估算模型[J].生态学报,2011,31(22):6645-6658.

Memo

Memo:
-
Last Update: 2019-06-03