ExplorationandPracticeofPriceForecastingPlatformforFreshCutFlowersBasedonIntelligentAlgorithm
《北方园艺》[ISSN:1001-0009/CN:23-1247/S]
- Issue:
- 2018年20
- Page:
- 191-198
- Research Field:
- Publishing date:
Info
- Title:
- ExplorationandPracticeofPriceForecastingPlatformforFreshCutFlowersBasedonIntelligentAlgorithm
- Author(s):
- QIANYe1; 2; SUNJihong3; YEDan1; 2; PENGLin1; 2; LIWenfeng2
- (1.SchoolofBigData,YunnanAgriculturalUniversity,Kunming,Yunnan650201;2.KeyLaboratoryofAgriculturalInformationTechnologyinYunnan,Kunming,Yunnan650201;3.InstituteofScienceandTechnologyinYunnan,Kunming,Yunnan650000)
- Keywords:
- predict; price; intelligentalgorithm; RBF; GRNN
- PACS:
- -
- DOI:
- 10.11937/bfyy.20180557
- Abstract:
- Inordertosolveincompletecollectingdataofallkindsoffreshcutflowers,suchasretailprice,salesvolume,salesrateandsooninthemarket,basedonintelligentalgorithm,apricepredictionplatformoffreshcutflowersisdesignedforretailersandbuyers:thedataoffreshcutflowersarecollectedviathetradingofretailersandbuyers,thenusingthesedataasinputsourcestopredictthepriceoffreshcutflowersbasedonintelligentalgorithm,atlast,theforecastresultsnotonlyarefedbacktofreshcutflowergrowersandplantenterprisestoensuretheireconomicbenefits,butalsocanprovidein-depthresearchdataforresearchers.Inthisstudy,thekeytechniquesoffreshcutflowerpredictionwereexplored.Accordingtothesizeoftheinputlayerdata,RadicalBasicFunction(RBF),GeneralRegressionNeuralNetwork(GRNN)wereappliedrespectivelytobuildthecutflowerpriceforecastingmodel.Takingtherosecutflowersasexample,withthedatapublishedbyDounanFlowerMarketasinputsourceofthetwopredictionmodels.TheexperimentalresultsshowedthatRBFandGRNNweresuitablefordifferentlevelsscaleofinputdatasetsandtheforecastaccuracyrateremainedat85%-95%.
Last Update: 2018-12-06