|Table of Contents|

Effects of Oligostry on Photosynthetic Parameters and Light Response Curves of Cucumber

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2018年12
Page:
1-6
Research Field:
Publishing date:

Info

Title:
Effects of Oligostry on Photosynthetic Parameters and Light Response Curves of Cucumber
Author(s):
LI Jiashuai1 YANG Zaiqiang12 XUE Sijia1JIANG Mengyuan1ZHAO Heli1
(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing,Jiangsu 210044;2. Jiangsu Provincial Key Laboratory of Agrometeorology,Nangjing ,Jiangsu 210044)
Keywords:
cucumber sparse sunlight photosynthetic characteristics light response curve
PACS:
-
DOI:
10.11937/bfyy.20174487
Abstract:
‘Nanza No.2’ cucumber was used as test material, the photosynthetic characteristics of cucumber leaves under light conditions were studied by using shading nets for 3 days, 6 days, 9 days and 12 days of successive widows of cucumber seedlings for 1 hour, 3 hours, and 5 hours. Using the Non-rectangular hyperbola model, the Exponential model, the Rectangular hyperbola model and the Rectangular hyperbola correction model to simulate the light response curve, the optimal model was selected to simulate the photosynthetic parameters. The purpose was providing the scientific basis for optimizing the control of planting cucumber lighting. The results showed that the Rectangular hyperbola correction model was the best, followed by the Exponential model, the non-rectangular hyperbola model, the Rectangular hyperbola model. The photosynthetic parameters were calculated by the simulated values of Rectangular hyperbola correction model. The net photosynthetic rate under sparse sunlight , maximum photosynthetic rate, light saturation point, apparent quantum efficiency, and stomatal conductance were all decreased. The transpiration rate increased first and then decreased. The light compensation point and stomatal limit values increased, and the water use efficiency decreased first and then increased. The net photosynthetic rate at 5 hours decreased by 23.56%, 45.40%, and 62.60%, respectively, compared with the control.

References:

 

[1]赵春波, 宋述尧, 赵靖, . 北方地区不同黄瓜品种氮素吸收与利用效率的差异[J]. 中国农业科学, 2015, 48(08): 1569- 1578.

[2] 李伟, 袁学平, 杨迤然, . 弱光对两品种黄瓜光合特性和生长发育的影响[J]. 东北农业大学学报, 2012, 43(1) : 97- 103.

[3] 程雅茹, 李剑萍, 武万里, . 寡照对温室黄瓜叶片光合特性及抗氧化酶活性的影响[J]. 宁夏农林科技, 2015, 56(1) : 11- 14.

[4] 熊宇, 杨再强, 薛晓萍, . 寡照处理对温室黄瓜幼龄植株叶片光合参数的影响[J] . 中国农业气象, 2016 , 37(2) : 222- 230.

[5] 李愚鹤, 李加旺, 张文珠. 不同品种黄瓜幼苗光合特性对弱光的响应[J]. 华北农学报, 2010, 25(4) : 158- 161.

[6] 方晶. 光强对温室黄瓜植株形态和光合特性的影响[J] . 安徽农业科学, 2011, 39(9) : 5047- 5048.

[7] 裴孝伯,李世诚,蔡润. 连续弱光处理对黄瓜生育及光合速率的影响[J] . 安徽农业大学学报, 2005, 32(3) : 373- 376.

[8] 张继波, 薛晓萍, ,. 寡照对北方日光温室黄瓜光合、形态及产量的影响研究[J]. 山东气象, 2016, 36(1) : 23- 26.

[9] 张淑杰, 杨再强, 陈艳秋,. 低温、弱光、高湿胁迫对日光温室番茄花期生理生化指标的影响[J]. 生态学杂志, 2014,

33(11) : 2995-3001.

[10] 于红, 黎贞发, 罗新兰, . 低温寡照对日光温室番茄幼苗生长的影响[J] . 北方园艺, 2011(24) : 56- 60.

[11] 程芳芳. 寡照对大棚草莓的影响[J] . 农学学报, 2016, 6(7): 90- 95.

[12] Thornley J H M. Mathematical models in plant physiology[M]. London: Academic Press, 1976.

[13] Prado C H, Moraes J. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions[J]. Photosynthetica , 1997,33(1): 103- 112.

[14] Lewis J D, Olszyk D, Tingey D T. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature[J]. Tree Physiology, 1999(19): 243- 252.

[15] Ye Z P,Yu Q. Comparison of a new model of light response of photosynthesis with traditional models[J]. Journal of Shenyang Agricultural University, 2007, 38(6): 771- 775.

[16] 于艳梅, 徐俊增, 彭世彰, . 不同水分条件下水稻光合作用的光响应模型的比较[J]. 节水灌溉, 2012, 31(10): 30-33.

[17] 白云岗, 刘洪波, 张江辉, . 葡萄光合作用光响应曲线拟合模型比较研究[J]. 节水灌溉, 2016, 35(9): 8-11.

[18] 张曼义, 杨再强, 侯梦媛. 水分胁迫下黄瓜叶片光响应过程的模拟[J]. 中国农业气象, 2017, 38(10): 644- 654.

[19] Berry J A, Downton W J S. Environmental regulation of photosynthesis[J]. Photosynthesis, 1982,Vol II: 263- 343.

[20]Zhang Z. Research development in estimation models of crop water use efficiency and transpiration and evaporation[J]. Agricultural Reseach in the Arid Areas, 1997, 15(1): 73- 78.

[21]Gunderson C A, Wullschleger S D. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective[J]. Photosynthesis Research, 1994, 39: 369-388.

[22]Bassman J B, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa×P. deltoides clones[J]. Tree Physiology, 1991, 8(2): 145- 149.


Memo

Memo:
-
Last Update: 2018-05-14