[1]喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126. [2]NICOL J M,TURNER S J,COYNE D L,et al.Current nematode threats to world agriculture[M]//JONES J,eds.Genomics and molecular genetics of plant-nematodes interactions.New York:Springer Press,2011:22-43. [3]ABAD P,WILLIAMSON V M.Plant nematode interaction:A sophisticated dialogue[J].Advances in Botanical Research,2010,53(10):147-192. [4]VOS P,SIMONS G,JESSE T,et al.The tomato [STBX]Mi-1[STBZ] gene confers resistance to both root-knot nematodes and potato aphids[J].Nature Biotechnology,1998,16(13):1365-1369. [5]GHEYSEN G,MITCHUM M G.How nematodes manipulate plant development pathways for infection[J].Current Opinion in Plant Biology,2011,14(4):415. [6]DAVIS E L,HUSSEY R S,BAUM T J.Getting to the roots of parasitism by nematodes[J].Trends in Parasitology,2004,20(3):134-141. [7]SHAHBAZ M U,MUKHTAR T,IRFANULHAQUE M,et al.Biochemical and serological characterization of Ralstonia solanacearum associated with chilli seeds from Pakistan[J].International Journal of Agriculture & Biology,2015,17(1):31-40. [8]YANG Y X,AHAMMED G J,WU C,et al.Crosstalk among jasmonate,salicylate and ethylene signaling pathways in plant disease and immune responses[J].Current Protein and Peptide Science,2015(16):450-461 [9]SHUKLA N,YADAV R,KAUR P,et al.Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses[J].Molecular Plant Pathology,2017,19(3):615-633. [10]XING X,LI X,ZHANG M,et al.Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection[J].Biochemical & Biophysical Research Communications,2016,482(4):1114-1121. [11]CABRERA J,BARCALA M,FENOLL C,et al.Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signaling[J].Frontiers in Plant Science,2014,5(5):107. [12]KYNDT T,NAHAR K,HACECK A,et al.Transcriptional reprogramming by root knot and migratory nematode infection in rice[J].New Phytologist,2012,196(3):887-900. [13]LI R J,RASHOTTE A M,SINGH N K,et al.Integrated signaling networks in plant responses to sedentary endoparasitic nematodes:A perspective[J].Plant Cell Reports,2015,34(1):5-22. [14]MOLINARI S,FANELLI E,LEONETTI P.Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in [STBX]Mi-1[STBZ]-mediated and SA-induced resistance to root-knot nematodes[J].Molecular Plant Pathology,2014,15(3):255-264. [15]MEHER H C,GAJBHIYE V T,SING G.Salicylic acid-induced glutathione status in tomato crop and resistance to root-knot nematode,Meloidogyne incognita (Kofoid & White) Chitwood[J].Journal of Xenobiotics,2011,1(1):22-28. [16]MARTNEZ-MEDINA A,FERNANDEZ I,LOK G B,et al.Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita[J].New Phytologist,2017,213(3):1363. [17]NAHAR K,KYNDT T,de VLEESSCHAUWER D,et al.The jasmonate pathway is a key player in systemically induced defense against root knot Nematodes in rice[J].Plant Physiology,2011,157(1):305-316. [18]ZHOU J,JIA F,SHAO S,et al.Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants[J].Frontiers in Plant Science,2015,6(193):193. [19]HU Y,YOU J,LI C,et al.Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean[J].Nematology,2017(19):1-12. [20]蔡加星.番茄南方根结线虫防控技术的研究[D].杭州:浙江大学,2016. [21]KAMMERHOFER N,RADAKOVIC Z,REGIS J M A,et al.Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis[J].New Phytologist,2015,207(3):778-789. [22]HU Y,JIA Y,LI C,et al.Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines[J].Scientific Reports,2017(7):41282. [23]KYNDT T,NAHAR K,HAECK A,et al.Interplay between carotenoids,abscisic acid and jasmonate guides the compatible rice-Meloidogyne graminicola interaction[J].Frontiers in Plant Science,2017(8):951. [24]NAHAR K,KYNDT T,HAUSE B,et al.Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J].Molecular Plant-microbe Interactions,2013,26(1):106-115 [25]SONG L X,XU X C,WANG F N,et al.Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato[J/OL].Plant Cell and Environment,2017,DOI:10.1111/pce.12952. [26]TORRES M A,JONES J D G,DANGL I J L.Reactive oxygen species signaling in response to pathogens[J].Plant Physiology,2006,141(2):373-378. [27]MELILLO M T,LEONETTI P,BONGIOVANNI M,et al.Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions[J].New Phytologist,2006,170(3):501. [28]SIDDIQUE S,MATERA C,RADAKOVIC Z S,et al.Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection[J].Science Signaling,2014,7(320):33. [29]NINA K,ZORAN R,REGIS J M A,et al.Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis[J].New Phytologist,2015,207(3):778-89. [30]MEDEIROS H A D,FRITAS L G D,CASTILLO P,et al.Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride[J].Scientific Reports,2017(7):40216. [31]JI H,KYNDT T,HE W,et al.β-Aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense[J].Molecular Plant-microbe Interactions,2015,28(5):519. [32]HUANG W K,JI H L,GHEYSEN G,et al.Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation[J].Molecular Plant Pathology,2016,17(4):614-624. [33]XIAO Z,LIU M,JIANG L,et al.Vermicompost increases defense against root-knot nematode (Meloidogyne incognita ) in tomato plants[J].Applied Soil Ecology,2016,105:177-186. [34]FUJIMOTO T,TOMITAKA Y,ABE H,et al.Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate[J].Journal of Plant Physiology,2011,168(10):1084-1097. [35]KANGASJARVI S,NEUKERMANS J,LI S,et al.Role of small RNAs in host-microbe interactions[J].Annual Review of Phytopathology,2010,48(1):225-246. [36]PORTILLO M,CABRERA J,LINDSEY K E T,et al.Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis:A functional role for gene repression[J].New Phytologist,2013,197(4):1276-1290. [37]MEDINA C,DA ROCHA M,MAHLIANO M,et al.Characterization of microRNAs from Arabidopsis galls highlights a role for 〖STBX〗miR159〖STBZ〗 in the plant response to the root-knot nematode Meloidogyne incognita[J].New Phytologist,2017,216(3):882-896. [38]KAUR P,SHUKLA N,JOSHI G,et al.Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction[J].PLoS One,2017,12(4):0175178. [39]ROSSI M,GOGGIN F L,MILLIGAN S B,et al.The nematode resistance gene Mi of tomato confers resistance against the potato aphid[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(17):9750-9754. [40]MILLIGAN S B,BODEAU J,YAGHOOBI J,et al.The root nematode resistance gene Mi from tomato is a member of leucine zipper,nucleotide binding,leucine-rich repeat family of plant genes[J].Plant Cell,1998,10(8):1307-1319. [41]DROPKIN V H.Cellular responses of plants to nematode infections[J].Annual Review of Phytopathology,1969,7(1):101-122. [42]CROW W T.Nematode management for perennial landscape plants in florida[J].Entomology & Nematology,2017,89:670-680. [43]BHATTARAI K K,BISHNOI U,KALASHIAN I.Root-knot nematode/tomato interactions:Transcriptome profiling and defense signaling pathways[J].Journal of Nematology,2007,39(1):73. [44]MAO Z,ZHU P,LIU F,et al.Cloning and functional analyses of pepper CaRKNR involved in Meloidogyne incognita resistance[J].Euphytica,2015,205(3):903-913. [45]薛莹莹,邓云,刘君璞,等.西瓜抗根结线虫相关基因的克隆与表达分析[J].果树学报,2015,32(6):1107-1113. [46]GRIEBEL T,ZEIER J.Light regulation and daytime dependency of inducible plant defenses in Arabidopsis:Phytochrome signaling controls systemic acquired resistance rather than local defense[J].Plant Physiology,2008,147(2):790. [47]KANGASJRVI S,NEUKERMANS J,LI L,et al.Photosynthesis,photorespiration,and light signalling in defence responses[J].Journal of Experimental Botany,2012,63(4):1619. [48]WANG H,JIANG Y P,YU H J,et al.Light quality affects incidence of powdery mildew,expression of defence-related genes and associated metabolism in cucumber plants[J].European Journal of Plant Pathology,2010,127(1):125-135. [49]YANG Y X,WANG M M,YIN Y L,et al.RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv.tomato DC3000 in tomato plants[J].BMC Genomics,2015,16(1):1-16. [50]SUTHAPARAN A,SOLHAUG K A,STESVAND A,et al.Daily light integral and day light quality:Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew[J].Journal of Photochemistry & Photobiology B Biology,2017,175(41):141-148. [51]OUHIBI C,ATTIA H,NICOT P,et al.Effects of nitrogen supply and of UV-C irradiation on the susceptibility of Lactuca sativa L. to Botrytis cinerea and Sclerotinia minor[J].Plant & Soil,2015,393(1):1-12. [52]VSQUEZ H,OUHIBI C,LIZZI Y,et al.Pre-harvest hormetic doses of UV-C radiation can decrease susceptibility of lettuce leaves (Lactuca sativa L.) to Botrytis cinerea L.[J].Scientia Horticulturae,2017,222:32-39. [53]ISLAM S Z,BABADOOST M,BEKAL S,et al.Red Light-induced systemic disease resistance against root-knot nematode Meloidogyne javanica and Pseudomonas syringae pv.tomato DC 3000[J].Journal of Phytopathology,2008,156(11-12):708-714. [54]袁慧丽.不同LED光源液间补光对叶用莴苣生长和营养品质及黄瓜根结线虫抗性的影响[D].杭州:浙江大学,2012. [55]MUTAR S S,FATTAH F A.Red Light-induced systemic resistance to root knot nematodes in tomato[J].Journal of Biology Agriculture & Healthcare,2013(3):110. [56]YANG Y X,WANG M M,REN Y,et al.Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita[J].Plant Growth Regulation,2015,76(2):167-175. [57]付雁南.LED光照对番茄灰霉病侵染及叶片防御系统的影响[D].沈阳:沈阳农业大学,2016. [58]YU S M,RAMKUMAR G,LEE Y H.Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants[J].Journal of Applied Microbiology,2013,115(2):509. [59]FUJIIE A,YOKOYAMA T.Effects of ultraviolet light on the entomopathogenic nematode,Steinernema kushidai and its symbiotic bacterium,Xenorhabdus japonica[J].Applied Entomology & Zoology,1998,33(2):263-269. [60]GUO H J,HUANG L C,SUN Y C,et al.The contrasting effects of elevated CO2 on TYLCV infection of tomato genotypes with and without the resistance gene,〖STBX〗Mi-1.2〖STBZ〗[J].Frontiers in Plant Science,2016,1680(7):1-14. [61]XIE X Z,XUE Y J,ZHOU J J,et al.Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea[J].Molecular Plant,2011,4(4):688-696. [62]IZAGUIRRE M M,MAZZA C A,BIONDINI M,et al.Remote sensing of future competitors:Impacts on plant defenses[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(18):7170. [63]DION L M,LEFSRUD M,ORSAT V,et al.Biomass gasification and syngas combustion for greenhouse CO2 enrichment[J].Bioresources,2013,8(2):1520-1538. [64]ZHANG S,LI X,SUN Z H,et al.Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2[J].Journal of Experimental Botany,2015,66(7):951-963. [65]GUO H,SUN Y,REN Q,et al.Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway[J].PLoS One,2012,7(7):41426. [66]ZAVALA J A,CASTEEL C L,DELUCIA E H,et al.Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(13):5129-5133. [67]LI X,SUN Z,SHAO S,et al.Tomato-Pseudomonas syringae interactions under elevated CO2 concentration:The role of stomata[J].Journal of Experimental Botany,2015,66(1):307-316. [68]SUN Y C,CAO H F,YIN J,et al.Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway[J].Plant Cell & Environment,2010,33(5):729. [69]SUN Y C,YIN J,CAO H F,et al.Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway[J].PLoS One,2011,6(5):19751. [70]BUTTERLY C R,WANG X,ARMSTRONG R D,et al.Elevated CO2 induced rhizosphere effects on the decomposition and N recovery from crop residues[J].Plant & Soil,2016,408(2):1-17. [71]NRHER D A,WEICHT T R.Nematode genera in forest soil respond differentially to elevated CO2[J].Journal of Nematology,2013,45(3):214. [72]BAO X L.Effect of elevated atmospheric CO2 and N fertilization on soil nematode community in a rice-wheat rotation system[J].Scientia Agricultura Sinica,2011,44(22):4627-4635. [73]陈婧,陈法军,刘满强,等.温度和CO2浓度升高下转Bt水稻种植对土壤活性碳氮和线虫群落的短期影响[J].生态学报,2014,34(6):1481-1489.