|Table of Contents|

Isolation, Identification and Water-retaining Effect of ZMN-3 From Desertified Soil

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2018年08
Page:
3-
Research Field:
Publishing date:

Info

Title:
Isolation, Identification and Water-retaining Effect of ZMN-3 From Desertified Soil
Author(s):
REN Mengnan 1JIN Yu 1LI Xiaoyan 2LI Siqi 1WANG Yanmei 1Huang Haidong 1
1.College of Agronomy and Resources and Environment, Tianjin Agricultural University, Tianjin 300384; 2.Department of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384
Keywords:
extracellular polysaccharide Massilia identification water retention effect
PACS:
-
DOI:
10.11937/bfyy.20174354
Abstract:
Desertified soil was used as experimental material. Polysaccharides synthetic strain ZMN-3 was isolated and identified by the method of dilution flat and polyphasic taxonomy. For the purpose of supply bacteria resources and reference for applying in artificial biological crust fix sand, properties of fermentation broth and water conservation of strain ZMN-3 were investigated. The results showed that strain ZMN-3 belonged to the genes of Massilia, exhibiting the highest 16S rRNA sequence similarity with Massilia plicata 76T(96.5%). On the basis of phylogenetics, physiological and biochemical analysis, strain ZMN-3 was considered to represent a novel species of the genus Massilia. The extracellular polysaccharide synthesized by ZMN-3 consisted of two components with different molecular weight distribution. The weight average molecular weight Mw was 1.91×104 kDa and 947 kDa, respectively. After incubation at 30 ℃ for 3 days, the viscosity of ZMN-3 fermentation broth reached 2 150 mPa?s, as viscous pseudoplastic fluid. The microbial agent of ZMN-3 was sprayed on the surface of sand, compact bio-crust formed and the ability of water conservation of sand increased.

References:

[1] 张培培, 赵允格, 王媛, 等.黄土高原丘陵区生物结皮土壤的斥水性[J].应用生态学报, 2014, 25(3): 657-663.

[2] 冯伟, 叶菁.踩踏干扰下生物结皮的水分入渗与水土保持效应[J].水土保持研究, 2016, 23(1): 34-43.
[3] HARPER K T, BELNAP J. The influence of biological soil crusts mineral up-take by associated vascular plants[J].Journal of Arid Environments, 2001, 47: 347-357.
[4] JINZI DENG, ERIKA P,ORNE, et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels[J]. Journal of Soil Biology & Biochemistry, 2015, 83:116-124.
[5] YOUNES A, WAFA A. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots[J]. Journal of Applied and Environmental Microbiology, 2000, 66(8): 3393-3398.
[6] 田丰伟,丁虎生,丁纳,等.产胞外多糖的乳酸菌的简便筛选与鉴定[J].食品与发酵工业,2008,(3):15-19.
[7] 赵启铎,舒乐新,马琳,等.硫酸-苯酚法测定槐甘菌质多糖的含量[J].宜春学院学报,2011,8(33):74-76.
[8] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京: 科学出版社, 2001: 267-295.
[9] 李雪萍,李建宏,孟宪刚,等.浆水中微生物的分离与鉴定[J].食品科学,2014,35(23):204-209.
[10] HUANG H D, WEI W, TING M, et al. Sphingomonas sanxanigenens sp. Nov.:Isolated from soil[J].International Journal of Systematic and Evolutionary Microbiology, 2009, 59(4): 719-723.
[11] 周明明,任梦楠,李晓雁, 等.三赞鞘氨醇单胞菌生物结皮对土壤水肥保持的影响[J].北方园艺, 2016 (20): 171-174.
[12] 秦士维,夏秀英,安丽佳,等. 蓝莓果实潜伏侵染病原真菌的分离与鉴定[J].北方园艺, 2017(18): 41-48.
[13] DEVEREUX R, HE S H, DOYLE C L, et al. Diversity and origin of Desulfovibrio species:Phylogenetic definition of a family[J]. J Bacteriol,1990,172:3609-3619.
[14] FRY N K, WARWICK S, SAUNDERS N A, et al. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae[J]. J Gen Microbiol,1991,137:1215-1222.
[15] ZHANG Y Q, LI W J, ZHANG K Y, et al.Massilia dura sp. nov., Massilia albidiflava sp. nov.,Massilia plicata sp. nov. and Massilia lutea sp. nov.,isolated from soils in China[J]. International Journal of Systematic and Evolutionary Microbiology.2006,56:459-463.
[16] 汪洪涛,周艳红,余芳.大豆皮水溶性多糖组成及其流变学性质研究[J].中国食品添加剂试验研究,2012(5):134-139.
[17] 王薇,黄海东,张禹,等.一种新型生物聚合物Ss的流变学性质及成胶特性[J].微生物学通报,2008.35(6):866-871.
[18] 张桂玲,胡文革,庄丽,等.荒漠土壤植被改造过程中土壤微生物区系研究[J].北方园艺, 2010(7): 1-5.

Memo

Memo:
-
Last Update: 2018-03-01