|Table of Contents|

Analysis of Performance for Back Wall of Initiative Heat Storage of  Solidified Sand on Solar Greenhouse(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2017年09
Page:
46-52
Research Field:
Publishing date:

Info

Title:
Analysis of Performance for Back Wall of Initiative Heat Storage of  Solidified Sand on Solar Greenhouse
Author(s):
ZHU Chao1SUN Yachen2HE Bin3BAO Encai2ZHANG Yong2ZOU Zhirong2
(1.College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling,Shaanxi 712100;2.College of Horticulture,Northwest A&F University,Yangling,Shaanxi 712100;3.College of Water Resources and Architectural Engineering,Northwest A&F University,Yangling,Shaanxi 712100)
Keywords:
solidified sandactive heat storagesolar greenhouseperformance analysis
PACS:
-
DOI:
10.11937/bfyy.201709010
Abstract:
The northwest of China area is vast and sandy soil resources are rich.A kind of initiative heat storage of solidified sand back wall solar greenhouse was designed in this study.Concrete precast slabs with channels were stored inside the wall at different layers.During daytime,the hot air in the greenhouse was positively stored in the wall with fans.In this way,during night time,the stored heat could be actively released into the greenhouses,thereby improving the temperature.Data from typical winter sunny days,cloudy days and snowy days were selected.The differences of inner greenhouse photometric quantity,temperature and inner wall temperature were analyzed between solidified sand heat storage walls and regular benzene plate brick walls.Compared with greenhouses with regular benzene plate brick walls,in greenhouses with solidified sand heat storage walls,no significant photometric quantity differences were observed.For the average inner temperature,the temperature increased 1.7,2.5,2.4 ℃,respectively,during typical winter sunny days(January 24th,2016),cloudy days(January 16th,2016) and snow days(December 11th,2015).The constant inner temperature regions in solidified sand heat storage walls ranged from 740 mm to 1 000 mm.Among these,the heat storage thickness exceeded 740 mm and the solidified sand heat storage wall thickness exceeded 620 mm.The overall heat storage thickness and capacity both exceeded that of regular benzene plate brick walls.These results showed that this new greenhouse had a very good thermal insulation effects and were suitable for further applications in non-cultivated land area of northwest of China.

References:

 

[1]申保珍.我国设施农业创造近7000万就业岗位[N].农民日报,2015-07-0901.

[2]汪懋华.物联网技术支撑蔬菜日光温室转型创新发展的探索[R].沈阳:全国日光温室发展学术论坛,2015.

[3]蒋广洁,韩航玲.关于枣庄市台儿庄区发展光伏农业大棚的思考[J].现代农业科技,2014(13)225,227.

[4]罗旋,蔡忠杰,孙英玲,.高效节能日光温室墙体结构及保温性能的研究现状[J].农业科技与装备,2015(3)25-26.

[5]李明,魏晓明,齐飞,.日光温室墙体研究进展[J].新疆农业科学,2014,51(6):11621170.

[6]佟国红,白义奎,赵荣飞,等.日光温室复合墙与土墙热性能对比分析[J].沈阳农业大学学报,201142(6)718-722.

[7]管勇,陈超,凌浩恕,等.日光温室三重结构相变蓄热墙体传热特性分析[J].农业工程学报,201329(21)166-173.

[8]马承伟,陆海,李睿,等.日光温室墙体传热的一维差分模型与数值模拟[J].农业工程学报,201026(6):231-237

[9]白青,张亚红,孙利鑫.基于温波传递理论的日光温室土墙体蓄热层及墙体厚度分析[J].农业工程学报,201632(22)207-213.

[10]李明,周长吉,丁小明,等.日光温室聚苯乙烯型砖复合墙保温蓄热性能[J].农业工程学报,2016321):200205.

[11]张勇,邹志荣.一种主动采光及固化土自主蓄热后墙日光温室:103416261[P].2013-12-04.

[12]张勇,高文波,邹志荣.日光温室主动蓄热后墙传热 CFD 模拟及性能试验[J].农业工程学报,201531(5):203-211.

[13]高文波,张勇,邹志荣,等.主动采光蓄热型日光温室性能初探[J].农机化研究,2015(7)181-186.

[14]罗伟,韩晓栩,蒋欣梅,.温室不同结构内墙体对其温效应的影响[J].中国农机化学报,2016,37(3):7477.

[15]张志录,王思倩,刘中华,.下沉式日光温室土质墙体热特性的试验与分析[J].农业工程学报,2012,28(12):208215.

[16]李明,周长吉,魏晓明.日光温室墙体蓄热层厚度确定方法[J].农业工程学报,201531(2)177-183.

Memo

Memo:
-
Last Update: 2017-05-12