|Table of Contents|

Photosynthetic Characteristics of Rhodiola sachalinensis Transformed by  UDP-glucose:flavonoid 3-O-glucosyltransferase Gene(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2017年06
Page:
108-112
Research Field:
Publishing date:

Info

Title:
Photosynthetic Characteristics of Rhodiola sachalinensis Transformed by  UDP-glucose:flavonoid 3-O-glucosyltransferase Gene
Author(s):
WEI XiaoweiNING SiqiYANG BinZHANG XinXU HongweiZHOU Xiaofu
(Key Laboratory for Plant Resources Science and Green Production,Jilin Normal University,Siping,Jilin 136000)
Keywords:
UDP-glucose:flavonoid 3-O-glucosyltransferaseRhodiola sachalinensischlorophyll fluorescence
PACS:
-
DOI:
10.11937/bfyy.201706025
Abstract:
Rhodiola sachalinensis was used as test material.Modulated chlorophyll fluorescence system (IMAGING-PAM M-Series) was used to measure chlorophyll fluorescence parameters of Rhodiola sachalinensis transformed by UDP-glucose:flavonoid 3-O-glucosyltransferase gene to compare the chlorophyll fluorescence characteristics difference of Rhodiola sachalinensis and provided the scientific basis for germplasm improvement.The results showed that when exposed to photosynthetic active radiation (PAR) of 55 μmol?m-2?s-1,the FaGT1 gene transgenic Rhodiola sachalinensis,the FaGT1i gene transgenic Rhodiola sachalinensis and control had no significant difference in the value of maximum photosystem II quantum yield,the potential activity of photosystem II,non-photochemical quenching,photochemical quenching and effective quantum yield were significant higher in the FaGT1 gene transgenic Rhodiola sachalinensis than in the FaGT1i gene transgenic Rhodiola sachalinensis and control,but the regulated non-photochemical energy dissipation and non-regulated energy dissipation were lower.In addition,the differences of the electron transport rate,photochemical quenching and effective quantum yield in the FaGT1 gene transgenic Rhodiola sachalinensis,the FaGT1i gene transgenic Rhodiola sachalinensis and control under different PAR conditions.The electron transport rate and effective quantum yield were after the first increase in the stability of the trend and that significant higher in the FaGT1 gene transgenic Rhodiola sachalinensis than the FaGT1i gene transgenic Rhodiola sachalinensis and control,but the photochemical quenching was after the first decline in a smooth trend and had no significant difference.The primary light energy conversion of photosystem Ⅱ and the potential photosynthetic activity had increased of the FaGT1 gene transgenic Rhodiola sachalinensis. The energy metabolism of plant itself has been improved.The results above provided scientific basis for the cultivation of Rhodiola sachalinensis germplasm.

References:

 

[1]国微.长白山高山红景天遗传多样性研究[D].长春:吉林大学,2015.

[2]王林丽.红景天及复方制剂药理和临床研究进展[J].中医药学报,2003,31(1)51-53.

[3]倪付勇,陈重,许琼明,.高山红景天化学成分研究[J].中草药,2013,44(7):798-802.

[4]KO J H,KIM B G,HUR H G,et al.Molecular cloning,expression and characterization of a glycosyltransferase from rice[J].Plant Cell Reports,2006,25(7):741-746.

[5]STEFAN L,MARILUZ B,ASAPH A,et al.Cinnamate metabolism in ripening fruitCharacterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry[J].Plant Physiology,2006,140(3):1047-1058.

[6]FORD C M,BOSS P K,HJ P B.Cloning and characterization of Vitis vinifera UDP-glucoseflavonoid 3-O-glucosyltransferase,a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J].J Biol Chem,1998,2739224-9233.

[7]JONSSON L M V,AARSMAN M E G,BASTIAANNET J,et al.Common identity of UDP-glucoseanthocyanidin 3-O-glucosyltransferase and UDP-glucoseflavonol 3-O-glucosyltransferase in flowers of Petunia hybrida[J].Zeitschrift Für Naturforschung C,2014,39(6):559-567.

[8]王一,张霞,杨文钰,.不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响[J].中国农业科学,2016,49(11):2072-2081.

[9]徐澜,高志强,安伟,.冬麦春播条件下旗叶光合特性、叶绿素荧光参数变化及其与产量的关系[J].应用生态学报,2016,27(1):133-142.

[10]马锦丽,江洪,舒海燕,.竹炭有机肥对有机卷心菜叶绿素荧光特性和相对叶绿素含量的影响[J].东北农业大学学报,2015(3):29-36.

[11]张春平,何平,袁凤刚,.外源5-氨基乙酰丙酸对干旱胁迫下草珊瑚叶绿素荧光特性及能量分配的影响[J].中草药,2012,43(1):164-172.

[12]LAN Q M,BEN Y L,DONG Y G,et al.Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiola sachalinensis[J].Plant Cell Reports,2007,26(7):989-999.

[13]MARKUS G,THOMAS H,MARI L B,et al.Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit[J].Plant Physiology,2008,146(4):1528-1539.

[14]徐洪伟,周晓馥.高山红景天毛状根培养的研究[J].中国生态农业学报,2003,11(3):45-47.

[15]周晓馥,徐洪伟.一种利用发根农杆菌遗传转化高山红景天建立毛状根培养体系生产红景天甙的方法:CN101121941A[P].2008.

[16]ZHOU X F,WEI X W,ZHAO Z,et al.The influence of external factors on biomass and salidroside content in hairy roots of Rhodiola sachalinensis induced by Agrobacterium rhizogenes[C].Biomedical Engineering and Informatics(BMEI),2010 3rd International Conference on IEEE,20102130-2133.

[17]PLATT T,GALLEGOS C L,HARRISON W G.Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J].J Mar Res,1980,38:687-701.

[18]李涛,李运丽,李志强,.叶片发育影响紫罗勒花青素的强光诱导和激发能分配[J].植物生理学报,2014(5)675-682.

[19]CHE X,ZHANG Z,JIN L,et al.Effect of reducing nitric oxide in rumex,K-1 leaves on the photoprotection of photosystem II under high temperature with strong light[J].Journal of Plant Growth Regulation,2016,35(4):1-8.

[20]金立桥,车兴凯,张子山,.高温、强光下黄瓜叶片PSII供体侧和受体侧的伤害程度与快速荧光参数W_k变化的关系[J].植物生理学报,2015(6):969-976.

[21]GENTY B,BRIANTAIS J M,BAKER N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochimica et Biophysica Acta (BBA)-General Subjects,1989,990(1)87-92.

[22]CAILLY A,RIZZAL F,GENTY B,et al.Fate of excitation at PS in leaves,the nonphotochemical side[C].In Abstract Book of 10th FESPP Meeting,Florence,Italy,1996.

[23]KRAMER D M,JOHNSON G,KIIRATS O,et al.New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J].Photosynthesis Research,2004,79(2):209-218.

[24]HUGHES N M,NEUFELD H S,BURKEY K O.Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata[J].New Phytologist,2005,168(3):575-587.

[25]谢智华,姜卫兵,韩键,.叶片花色素苷对植物光合作用影响的研究进展[J].植物生理学报,2011(6):545-550.

[26]XU Y,WANG G,CAO F,et al.Light intensity affects the growth and flavonol biosynthesis of Ginkgo(Ginkgo biloba L.)[J].New Forests,2014,45(6):765-776.

[27]COONEY L J,SCHAEFER H M,LOGAN B A,et al.Functional significance of anthocyanins in peduncles of Sambucus nigra[J].Environmental and Experimental Botany,2015,119:18-26.

[28]KUMARI S.Lutein,anthocyanin and xanthophyll cycle components in wheat(Triticum aestivum)flag leaves under high light and high temperature conditions[J].Indian Journal of Applied Research,2013,3(4):1-3.

[29]NIELSEN S L,SIMONSEN A M.Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis—the effect of anthocyanin content[J].Photosynthetica,2011,49(3):346-352.

[30]SCHREIBER U,KLUGHAMMER C,KOLBOWSKI J.Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer[J].Photosynthesis Research,2012,113(1-3):127-144.

Memo

Memo:
-
Last Update: 2017-04-05